
Qt5 Cadaques
Release 2015-03

JRyannel,JThelin

March 14, 2018 at 02:55 CET

Contents

1 Meet Qt 5 3
1.1 Preface . 3
1.2 Qt 5 Introduction . 4
1.3 Qt Building Blocks . 8
1.4 Qt Project . 10

2 Get Started 11
2.1 Installing Qt 5 SDK . 11
2.2 Hello World . 11
2.3 Application Types . 13
2.4 Summary . 21

3 Qt Creator IDE 23
3.1 The User Interface . 23
3.2 Registering your Qt Kit . 24
3.3 Managing Projects . 24
3.4 Using the Editor . 25
3.5 Locator . 25
3.6 Debugging . 26
3.7 Shortcuts . 26

4 Quick Starter 27
4.1 QML Syntax . 27
4.2 Basic Elements . 32
4.3 Components . 36
4.4 Simple Transformations . 39
4.5 Positioning Elements . 42
4.6 Layout Items . 46
4.7 Input Elements . 49
4.8 Advanced Techniques . 53

5 Fluid Elements 55
5.1 Animations . 55
5.2 States and Transitions . 70
5.3 Advanced Techniques . 74

6 Model-View-Delegate 75
6.1 Concept . 75
6.2 Basic Models . 76
6.3 Dynamic Views . 80
6.4 Delegate . 89
6.5 Advanced Techniques . 96
6.6 Summary . 105

i

7 Canvas Element 107
7.1 Convenient API . 109
7.2 Gradients . 110
7.3 Shadows . 111
7.4 Images . 112
7.5 Transformation . 113
7.6 Composition Modes . 114
7.7 Pixel Buffers . 115
7.8 Canvas Paint . 116
7.9 Porting from HTML5 Canvas . 118

8 Particle Simulations 125
8.1 Concept . 125
8.2 Simple Simulation . 125
8.3 Particle Parameters . 128
8.4 Directed Particles . 129
8.5 Particle Painters . 132
8.6 Affecting Particles . 134
8.7 Particle Groups . 138
8.8 Summary . 145

9 Shader Effects 147
9.1 OpenGL Shaders . 147
9.2 Shader Elements . 148
9.3 Fragment Shaders . 150
9.4 Wave Effect . 154
9.5 Vertex Shader . 156
9.6 Curtain Effect . 164
9.7 Qt GraphicsEffect Library . 167

10 Multimedia 171
10.1 Playing Media . 171
10.2 Sound Effects . 173
10.3 Video Streams . 174
10.4 Capturing Images . 175
10.5 Advanced Techniques . 177
10.6 Summary . 178

11 Networking 179
11.1 Serving UI via HTTP . 179
11.2 Templating . 182
11.3 HTTP Requests . 182
11.4 Local files . 185
11.5 REST API . 186
11.6 Authentication using OAuth . 191
11.7 Engin IO . 192
11.8 Web Sockets . 192
11.9 Summary . 197

12 Storage 199
12.1 Settings . 199
12.2 Local Storage - SQL . 200
12.3 Other Storage APIs . 204

13 Dynamic QML 205
13.1 Loading Components Dynamically . 205
13.2 Creating and Destroying Objects . 209
13.3 Tracking Dynamic Objects . 212
13.4 Summary . 214

ii

14 JavaScript 215
14.1 Browser/HTML vs QtQuick/QML . 216
14.2 The Language . 216
14.3 JS Objects . 218
14.4 Creating a JS Console . 219

15 Qt and C++ 223
15.1 A Boilerplate Application . 224
15.2 The QObject . 227
15.3 Build Systems . 229
15.4 Common Qt Classes . 232
15.5 Models in C++ . 237

16 Extending QML with C++ 247
16.1 Understanding the QML Run-time . 247
16.2 Plugin Content . 249
16.3 Creating the plugin . 250
16.4 FileIO Implementation . 251
16.5 Using FileIO . 252
16.6 Summary . 259

17 Assets 261
17.1 Offline Books . 261
17.2 Source Code Examples . 261

iii

iv

Qt5 Cadaques, Release 2015-03

Last Build: March 11, 2018 at 15:30 CET

Welcome to the online book of Qt5 Cadaques! Why Qt5? Because Qt5 is awesome! Why cadaques? Because one
of the authors had a great holiday in this rocky coast line in the north-east of spain.

The entire collection of chapters covering Qt5 programming, written by Juergen Bocklage-Ryannel and Johan
Thelin, is available here. All book content is licensed under the Creative Commons Attribution Non Commercial
Share Alike 4.0 license and examples are licensed under the BSD license.

We are heavily working on this book and that means several things:

1. It’s not done. We will be releasing new chapters from time to time and updating existing chapters on the
go.

2. We love your support. If you find any errors or have suggestions, please use our feedback system (the

links). It will create a new ticket-entry in our ticket system and help us to
keep track.

3. Be patient. We are working in our spare time on the book and we depend on the support of our companies
and family.

Enjoy!

Content

Contents 1

http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
http://en.wikipedia.org/wiki/BSD_licenses

Qt5 Cadaques, Release 2015-03

2 Contents

CHAPTER 1

Meet Qt 5

Section author: jryannel

Note: The source code of this chapter can be found in the assets folder.

This book shall provide you a walk through the different aspect of application development using Qt version 5.x.
It focuses on the new Qt Quick technology but also provides necessary information of writing C++ back-ends and
extension for Qt Quick.

This chapter provides a high level overview of Qt 5. It shows the different application models available for
developers and a Qt 5 showcase application to get a sneak preview of things to come. Additionally the chapter
aims to provide a wide overview of the Qt 5 content and how to get in touch with the makers of Qt 5.

Preface

History

Qt 4 has evolved since 2005 and provided a solid ground for thousands of applications and even full desktop and
mobile systems. The usage patterns of computer users changed in the recent years. From stationary PCs towards
portable notebook and nowadays mobile computers. The classical desktop is more and more replaced with mobile
touch-based always connected screens. With it the desktop UX paradigms also changes. Where as in the past
Windows UI has dominated the world we spend more time nowadays on other screens with another UI language.

Qt 4 was designed to satisfy the desktop world to have a coherent set of UI widgets available on all major platforms.
The challenge for Qt users has changed today and it lies more to provide a touch-based user interface for a customer
driven user interface and to enable modern user interface on all major desktop and mobile systems. Qt 4.7 started
to introduce the Qt Quick technology which allows users to create a set of user interface components from simple
elements to achieve a complete new UI, driven by customer demands.

Qt 5 Focus

Qt 5 is a complete refreshing of the very successful Qt 4 release. With Qt 4.8, the Qt 4 release is almost 7 years
old. It’s time to make an amazing toolkit even more amazing. Qt 5 is focused on the following:

• Outstanding Graphics: Qt Quick 2 is based on OpenGL (ES) using a scene graph implementation. The
recomposed graphics stack allows a new level of graphic effects combined with an ease of use never seen
before in this field.

• Developer Productivity: QML and JavaScript are the primary means for UI creation. The back-end will
be driven by C++. The split between JavaScript and C++ allows a fast iteration for front-end developers
concentrating on creating beautiful user interfaces and back-end C++ developers concentrating on stability,
performance and extending the runtime.

3

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

• Cross-platform portability: With the consolidated Qt Platform Abstraction, it is now possible to port Qt
to a wider range of platforms easier and faster. Qt 5 is structured around the concept of Qt Essentials and
Add-ons, which allows OS developer to focus on the essentials modules and leads to a smaller runtime
altogether.

• Open Development: Qt is now a truly open-governance project hosted at qt.io. The development is open
and community driven.

Qt 5 Introduction

Qt Quick

Qt Quick is the umbrella term for the user interface technology used in Qt 5. Qt Quick itself is a collection of
several technologies:

• QML - Markup language for user interfaces

• JavaScript - The dynamic scripting language

• Qt C++ - The highly portable enhanced c++ library

Similar to HTML, QML is a markup language. It is composed of tags called elements in Qt Quick enclosed in
curly brackets Item {}. It was designed from the ground up for the creation of user interfaces, speed and easier
reading for developers. The user interface can be enhanced using JavaScript code. Qt Quick is easily extendable
with your own native functionality using Qt C++. In short the declarative UI is called the front-end and the native
parts are called the back-end. This allows you to separate the computing intensive and native operation of your
application from the user interface part.

In a typical project the front-end is developed in QML/JavaScript and the back-end code, which interfaces with
the system and does the heavy lifting, is developed using Qt C++. This allows a natural split between the more
design oriented developers and the functional developers. Typically the back-end is tested using Qt own unit
testing framework and exported for the front-end developers to be used.

Digesting an User Interface

Let’s create a simple user interface using Qt Quick, which showcases some aspects of the QML language. At the
end we will have a paper windmill with rotating blades.

4 Chapter 1. Meet Qt 5

http://qt.io

Qt5 Cadaques, Release 2015-03

We start with an empty document called main.qml. All QML files will have the ending .qml. As a markup
language (like HTML) a QML document needs to have one and only one root element, which in our case is the
Image element with a width and height based on the background image geometry:

import QtQuick 2.5

Image {
id: root
source: "images/background.png"

}

As QML does not make any restriction which element type is the root element we use an Image element with the
source property set to our background image as the root element.

Note: Each element has properties, e.g. an image has a width, height but also other properties like a source
property. The size of the image element is automatically deduced from the image size. Otherwise we would need
to set the width and height property to some useful pixel values.

The most standard elements are located in the QtQuick module which we include in the first line with the import
statement.

1.2. Qt 5 Introduction 5

Qt5 Cadaques, Release 2015-03

The id special property is optional and contains an identifier to reference this element later in other places in the
document. Important: An id property cannot be changed after it has been set and it cannot be set during runtime.
Using root as the id for the root-element is just a habit by the author and makes referencing the top-most element
predictable in larger QML documents.

The foreground elements pole and pin wheel of our user interface are placed as separate images.

The pole needs to be placed in the horizontal center of the background towards the bottom. And the pinwheel can
be placed in the center of the background.

Normally your user interface will be composed of many different element types and not only image elements like
in this example.

Image {
id: root
...
Image {

id: pole
anchors.horizontalCenter: parent.horizontalCenter
anchors.bottom: parent.bottom
source: "images/pole.png"

}

Image {
id: wheel
anchors.centerIn: parent
source: "images/pinwheel.png"

}

6 Chapter 1. Meet Qt 5

Qt5 Cadaques, Release 2015-03

...
}

To place the pin wheel at the central location we use a complex property called anchor. Anchoring allows
you to specify geometric relations between parent and sibling objects. E.g. Place me in the center of another
element (anchors.centerIn: parent). There are left, right, top, bottom, centerIn, fill, verticalCenter
and horizontalCenter relations on both ends. Sure, they need to match. It does not make sense to anchor my left
side to the top side of an element.

So we set the pinwheel to be centered in the parent our background.

Note: Sometime you will need to make small adjustments on the exact centering. This would be possible with
anchors.horizontalCenterOffset or with anchors.verticalCenterOffset. Similar adjust-
ments properties are also available to all the other anchors. Please consult the documentation for a full list of
anchors properties.

Note: Placing an image as a child element of our root element (the Image element) shows an important concept
of a declarative language. You describe the user interface in the order of layers and grouping, where the topmost
layer (our rectangle) is drawn first and the child layers are drawn on top of it in the local coordinate system of the
containing element.

To make the showcase a little bit more interesting, we would like to make the scene interactive. The idea is to
rotate the wheel when the user pressed the mouse somewhere in the scene.

We use the MouseArea element and make it as big as our root element.

Image {
id: root
...
MouseArea {

anchors.fill: parent
onClicked: wheel.rotation += 90

}
...

}

The mouse area emit signals when a user clicks inside it covered area. You can hook onto this signal overriding
the onClicked function. In this case the reference the wheel image and change its rotation by +90 degree.

Note: This works for every signal, the naming is on + SignalName in title cases. Also all properties emit a
signal when their value changed. The naming is:

on + PropertyName + Changed

If a width property is changing you can observe it with onWidthChanged: print(width) for example.

Now the wheel will rotate, but it is still not fluid yet. The rotation property changes immediately. What we would
like that the property changes by 90 degree over time. Now animations come into play. An animation defines how
a property change is distributed over a duration. To enable this we use an animation type called property behavior.
The Behaviour does specify an animation for a defined property for every change applied to that property. In
short every time the property changes, the animation is run. This is only one of several ways of declaring an
animation in QML.

Image {
id: root
Image {

id: wheel
Behavior on rotation {

1.2. Qt 5 Introduction 7

Qt5 Cadaques, Release 2015-03

NumberAnimation {
duration: 250

}
}

}
}

Now whenever the property rotation of the wheel changes it will be animated using a NumberAnimation with
a duration of 250 ms. So each 90 degree turn will take 250 ms.

Note: You will not actually see the wheel blurred. This is just to indicate the rotation. But a blurred wheel is in
the assets folder. Maybe you want to try to use that.

Now the wheel looks already much better. I hope this has given you a short idea of how Qt Quick programming
works.

Qt Building Blocks

Qt 5 consists of a large amount of modules. A module in general is a library for the developer to use. Some
modules are mandatory for a Qt enabled platform. They form a set called Qt Essentials Modules. Many modules
are optional and form the Qt Add-On Modules. It’s expected that the majority of developers will not have the need
to use them, but it’s good to know them as they provide invaluable solutions to common challenges.

Qt Modules

The Qt Essentials modules are mandatory for a Qt enabled platform. They offer the foundation to develop a
modern Qt 5 Application using Qt Quick 2.

Core-Essential Modules

The minimal set of Qt 5 modules to start QML programming.

8 Chapter 1. Meet Qt 5

Qt5 Cadaques, Release 2015-03

Module Description
Qt Core Core non-graphical classes used by other modules
Qt GUI Base classes for graphical user interface (GUI) components. Includes OpenGL.
Qt Multimedia Classes for audio, video, radio and camera functionality.
Qt Network Classes to make network programming easier and more portable.
Qt QML Classes for QML and JavaScript languages.
Qt Quick declarative framework for building highly dynamic applications with custom user

interfaces.
Qt SQL Classes for database integration using SQL.
Qt Test Classes for unit testing Qt applications and libraries.
Qt WebKit Classes for a WebKit2 based implementation and a new QML API. See also Qt WebKit

Widgets in the add-on modules.
Qt WebKit
Widgets

WebKit1 and QWidget-based classes from Qt 4.

Qt Widgets Classes to extend Qt GUI with C++ widgets.

QtGui

QtCore

QtNetwork

QtMultimedia

QtQml

QtQuick

QtSql

Qt Addon Modules

Besides the essential modules, Qt offers additional modules for software developers, which are not part of the
release. Here is a short list of add-on modules available.

• Qt 3D - A set of APIs to make 3D graphics programming easy and declarative.

• Qt Bluetooth - C++ and QML APIs for platforms using Bluetooth wireless technology.

• Qt Contacts - C++ and QML APIs for accessing addressbooks / contact databases

• Qt Location - Provides location positioning, mapping, navigation and place search via QML and C++ inter-
faces. NMEA backend for positioning

• Qt Organizer - C++ and QML APIs for accessing organizer events (todos, events, etc.)

• Qt Publish and Subscribe

• Qt Sensors - Access to sensors via QML and C++ interfaces.

• Qt Service Framework - Enables applications to read, navigate and subscribe to change notifications.

• Qt System Info - Discover system related information and capabilities.

1.3. Qt Building Blocks 9

Qt5 Cadaques, Release 2015-03

• Qt Versit - Support for vCard and iCalendar formats

• Qt Wayland - Linux only. Includes Qt Compositor API (server), and Wayland platform plugin (clients)

• Qt Feedback - Tactile and audio feedback to user actions.

• Qt JSON DB - A no-SQL object store for Qt.

Note: As these modules are not part of the release the state differ between modules, depending how many
contributors are active and how well it’s get tested.

Supported Platforms

Qt supports a variety of platforms. All major desktop and embedded platforms are supported. Through the Qt
Application Abstraction, nowadays it’s easier to port Qt over to your own platform if required.

Testing Qt 5 on a platform is time consuming. A sub-set of platforms was selected by the Qt Project to build
the reference platforms set. These platforms are thoroughly tested through the system testing to ensure the best
quality. Mind you though: no code is error free.

Qt Project

From the Qt Project wiki:

“The Qt Project is a meritocratic consensus-based community interested in Qt. Anyone who shares that interest
can join the community, participate in its decision making processes, and contribute to Qt’s development.”

The Qt Project is an organisation which developes the open-source part of the Qt further. It forms the base for
other users to contribute. The biggest contributor is DIGIA, which holds also the comercial rights to Qt.

Qt has an open-source aspect and a comercial aspect for companies. The comercial aspect is for companies which
can not or will not comply with the open-source licenses. Without the comercial aspect these companies would
not be able to use Qt and it would not allow DIGIA to contribute so much code to the Qt Project.

There are many companies world-wide, which make their living out of consultancy and product development
using Qt on the various platforms. There are many open-source projects and open-source developers, which rely
on Qt as their major development library. It feels good to be part of this vibrant community and to work with this
awesome tools and libraries. Does it make you a better person? Maybe:-)

Contribute here: http://wiki.qt.io/

10 Chapter 1. Meet Qt 5

http://wiki.qt.io/

CHAPTER 2

Get Started

Section author: jryannel

This chapter will introduce you to developing with Qt 5. We will show you how to install the Qt SDK and how
you can create as well as run a simple hello world application using the Qt Creator IDE.

Note: The source code of this chapter can be found in the assets folder.

Installing Qt 5 SDK

The Qt SDK include the tools needed to build desktop or embedded applications. The latest version can be grabbed
from the Qt-Company homepage. There are offline and online installer. The author personally prefers the online
installer package as it allows you to install and update several Qt releases. This is would be the recommended way
to start. The SDK itself has a maintenance tool which will allow you to update the SDK to the latest version.

The Qt SDK is easy to install and comes with its own IDE for rapid development called Qt Creator. The IDE is a
highly productive environment for Qt coding and recommended to all readers. Many developers use Qt from the
command line and you are free to use a code editor of your choice.

When installing the SDK, you should select the default option and ensure that Qt 5.x is enabled. Then you are
ready to go.

Hello World

To test your installation, we will create a small hello world application. Please open Qt Creator and create a
Qt Quick UI Project (File → New File or Project → Qt Quick Project → Qt Quick UI) and name the project
HelloWorld.

Note: The Qt Creator IDE allows you to create various types of applications. If not otherwise stated, we always
use a Qt Quick UI project.

Hint: A typical Qt Quick application is made out of a runtime called the QmlEngine which loads the initial QML
code. The developer can register C++ types with the runtime to interface with the native code. These C++ types
can also be bundled into a plugin and then dynamically loaded using an import statement. The qmlscene and
qml tool are pre-made runtimes, which can be used directly. For the beginning we will not cover the native side
of development and focus only on the QML aspects of Qt 5.

Qt Creator will create several files for you. The HelloWorld.qmlproject file is the project file where the
relevant project configuration is stored. This file is managed by Qt Creator so don’t edit.

11

https://github.com/jryannel
http://qt.io

Qt5 Cadaques, Release 2015-03

Another file, HelloWorld.qml, is our application code. Open it and try to guess what the application does and
then continue to read on.

// HelloWorld.qml

import QtQuick 2.5

Rectangle {
width: 360
height: 360
Text {

anchors.centerIn: parent
text: "Hello World"

}
MouseArea {

anchors.fill: parent
onClicked: {

Qt.quit();
}

}
}

The HelloWord.qml is written in the QML language. We will discuss the QML language in more depth in
the next chapter. QML describes the user interface as a tree of hierarchical elements. In this case, a rectangle of
360 x 360 pixels with a centered text reading “Hello World”. To capture user clicks a mouse area spans the whole
rectangle and when the user clicks it, the application quits.

To run the application on your own, please press the Run tool on the left side or select Build → Run from the
menu.

Qt Creator will start the qmlscene and passes the QML document as the first argument. The qmlscene will
parse the document and launch the user interface. Now you should see something like this:

Qt 5 seems to be working and we are ready to continue.

Tip: If you are a system integrator, you’ll want to have Qt SDK installed to get the latest stable Qt release as well
as a Qt version compiled from source code for your specific device target.

12 Chapter 2. Get Started

Qt5 Cadaques, Release 2015-03

Build from Scratch

If you’d like to build Qt 5 from the command line, you’ll first need to grab a copy of the code repository and
build it.

git clone git://gitorious.org/qt/qt5.git
cd qt5
./init-repository
./configure -prefix $PWD/qtbase -opensource
make -j4

After a successful compilation and 2 cups of coffee, Qt 5 will be available in the qtbase folder. Any beverage
will suffice, however, we suggest coffee for best results.

If you want to test your compilation, simply start qtbase/bin/qmlscene and select a Qt Quick example
to run it ...or follow just us into the next chapter.

To test your installation, we will create a small hello world application. Please create a simple example.qml
file using your favorite text editor and paste the following content inside:

// HelloWorld.qml

import QtQuick 2.5

Rectangle {
width: 360
height: 360
Text {

anchors.centerIn: parent
text: "Greetings from Qt 5"

}
MouseArea {

anchors.fill: parent
onClicked: {

Qt.quit();
}

}
}

You can run now the example by using the default runtime which comes with Qt 5:

$ qtbase/bin/qmlscene

Application Types

This section is a run through of the different possible application types someone could write with Qt 5. It’s not
limited to the presented selection but it should give the reader a better idea about what can be done with Qt 5 in
general.

Console Application

A console application does not provide any graphical user interface and will normally be called as part of a system
service or from the command line. Qt 5 comes with a series of ready-made components which help you to create
console cross platform applications very efficiently. For example the networking file APIs. Also string handling
and, since Qt 5.1, efficient command line parser. As Qt is a high-level API on top of C++, you get programming
speed paired with execution speed. Don’t think of Qt as being just a UI toolkit – it has so much more to offer.

2.3. Application Types 13

Qt5 Cadaques, Release 2015-03

String Handling

In the first example we demonstrate how someone could very simply add 2 constant strings. This is not a very
useful application but it gives you an idea of what a native C++ application, without an event loop, could look like.

// module or class includes
#include <QtCore>

// text stream is text-codec aware
QTextStream cout(stdout, QIODevice::WriteOnly);

int main(int argc, char** argv)
{

// avoid compiler warnings
Q_UNUSED(argc)
Q_UNUSED(argv)
QString s1("Paris");
QString s2("London");
// string concatenation
QString s = s1 + " " + s2 + "!";
cout << s << endl;

}

Container Classes

This example adds a list and list iteration to the application. Qt comes with a large collections of container classes
which are easy to use and use the same API paradigms as the rest of Qt classes.

QString s1("Hello");
QString s2("Qt");
QList<QString> list;
// stream into containers
list << s1 << s2;
// Java and STL like iterators
QListIterator<QString> iter(list);
while(iter.hasNext()) {

cout << iter.next();
if(iter.hasNext()) {

cout << " ";
}

}
cout << "!" << endl;

Here we show some advanced list function, which allow you to join a list of strings into one string. This is very
handy when you need to proceed line based text input. The inverse (string to string-list) is also possible using
QString::split() function.

QString s1("Hello");
QString s2("Qt");
// convenient container classes
QStringList list;
list << s1 << s2;
// join strings
QString s = list.join(" ") + "!";
cout << s << endl;

14 Chapter 2. Get Started

Qt5 Cadaques, Release 2015-03

File IO

In the next snippet we read a CSV file from the local directory and loop over the rows to extract the cells from
each row. Doing this we get the table data from the CSV file in ca. 20 lines of code. File reading gives us just a
byte stream, to be able to convert it into a valid Unicode text we need to use the text stream and pass in the file as
a lower-level stream. For writing CSV files you would just need to open the file in the write mode and pipe the
lines into the text stream.

QList<QStringList> data;
// file operations
QFile file("sample.csv");
if(file.open(QIODevice::ReadOnly)) {

QTextStream stream(&file);
// loop forever macro
forever {

QString line = stream.readLine();
// test for null string 'String()'
if(line.isNull()) {

break;
}
// test for empty string 'QString("")'
if(line.isEmpty()) {

continue;
}
QStringList row;
// for each loop to iterate over containers
foreach(const QString& cell, line.split(",")) {

row.append(cell.trimmed());
}
data.append(row);

}
}
// No cleanup necessary.

This concludes our section about console based application with Qt.

Widget Application

Console based applications are very handy but sometimes you need to have a UI to show. In addition, UI-based
applications will likely need a back-end to read/write files, communicate over the network, or keep data in a
container.

In this first snippet for widget-based applications we do as little as needed to create a window and show it. A
widget without a parent in the Qt world is a window. We use the scoped pointer to ensure the widget is deleted
when the scoped pointer goes out of scope. The application object encapsulates the Qt runtime and with the
exec() call we start the event loop. From there on the application reacts only on events triggered by mouse or
keyboard or other event providers like networking or file IO. The application will only exit when the event loop is
exited. This is done by calling quit() on the application or by closing the window.

When you run the code you will see a window with the size of 240 x 120 pixel. That’s all.

#include <QtGui>

int main(int argc, char** argv)
{

QApplication app(argc, argv);
QScopedPointer<QWidget> widget(new CustomWidget());
widget->resize(240, 120);
widget->show();
return app.exec();

}

2.3. Application Types 15

Qt5 Cadaques, Release 2015-03

Custom Widgets

When you work on user interfaces, you will need to create custom made widgets. Typically a widget is a window
area filled with painting calls. Additional the widget has internal knowledge of how to handle keyboard or mouse
input and how to react to external triggers. To do this in Qt we need to derive from QWidget and overwrite several
functions for painting and event handling.

#ifndef CUSTOMWIDGET_H
#define CUSTOMWIDGET_H

#include <QtWidgets>

class CustomWidget : public QWidget
{

Q_OBJECT
public:

explicit CustomWidget(QWidget *parent = 0);
void paintEvent(QPaintEvent *event);
void mousePressEvent(QMouseEvent *event);
void mouseMoveEvent(QMouseEvent *event);

private:
QPoint m_lastPos;

};

#endif // CUSTOMWIDGET_H

In the implementation, we draw a small border on our widget and a small rectangle on the last mouse position.
This is very typical for a low-level custom widget. Mouse or keyboard events change the internal state of the
widget and trigger a painting update. We don’t want to go into to much detail into this code, but it is good to know
that you have the ability. Qt comes with a large set of ready-made desktop widgets, so that the probability is high
that you don’t have to do this.

#include "customwidget.h"

CustomWidget::CustomWidget(QWidget *parent) :
QWidget(parent)

{
}

void CustomWidget::paintEvent(QPaintEvent *)
{

QPainter painter(this);
QRect r1 = rect().adjusted(10,10,-10,-10);
painter.setPen(QColor("#33B5E5"));
painter.drawRect(r1);

QRect r2(QPoint(0,0),QSize(40,40));
if(m_lastPos.isNull()) {

r2.moveCenter(r1.center());
} else {

r2.moveCenter(m_lastPos);
}
painter.fillRect(r2, QColor("#FFBB33"));

}

void CustomWidget::mousePressEvent(QMouseEvent *event)
{

m_lastPos = event->pos();
update();

}

void CustomWidget::mouseMoveEvent(QMouseEvent *event)

16 Chapter 2. Get Started

Qt5 Cadaques, Release 2015-03

{
m_lastPos = event->pos();
update();

}

Desktop Widgets

The Qt developers have done all of this for you already and provide a set of desktop widgets, which will look
native on different operating systems. Your job is then to arrange these different widgets in a widget container into
larger panels. A widget in Qt can also be a container for other widgets. This is accomplished by the parent-child
relationship. This mean we need to make our ready-made widgets like buttons, check boxes, radio button but also
lists and grids a child of another widget. One way to accomplish this is displayed below.

Here is the header file for a so called widget container.

class CustomWidget : public QWidget
{

Q_OBJECT
public:

explicit CustomWidget(QWidget *parent = 0);
private slots:

void itemClicked(QListWidgetItem* item);
void updateItem();

private:
QListWidget *m_widget;
QLineEdit *m_edit;
QPushButton *m_button;

};

In the implementation, we use layouts to better arrange our widgets. Layout managers re-layout the widgets
according to some size policies when the container widget is re-sized. In this example we have a list, a line edit,
and a button arranged vertically to allow to edit a list of cities. We use Qt’s signal and slots to connect sender
and receiver objects.

CustomWidget::CustomWidget(QWidget *parent) :
QWidget(parent)

{
QVBoxLayout *layout = new QVBoxLayout(this);
m_widget = new QListWidget(this);
layout->addWidget(m_widget);

m_edit = new QLineEdit(this);
layout->addWidget(m_edit);

m_button = new QPushButton("Quit", this);
layout->addWidget(m_button);
setLayout(layout);

QStringList cities;
cities << "Paris" << "London" << "Munich";
foreach(const QString& city, cities) {

m_widget->addItem(city);
}

connect(m_widget, SIGNAL(itemClicked(QListWidgetItem*)), this,
→˓SLOT(itemClicked(QListWidgetItem*)));

connect(m_edit, SIGNAL(editingFinished()), this, SLOT(updateItem()));
connect(m_button, SIGNAL(clicked()), qApp, SLOT(quit()));

}

2.3. Application Types 17

Qt5 Cadaques, Release 2015-03

void CustomWidget::itemClicked(QListWidgetItem *item)
{

Q_ASSERT(item);
m_edit->setText(item->text());

}

void CustomWidget::updateItem()
{

QListWidgetItem* item = m_widget->currentItem();
if(item) {

item->setText(m_edit->text());
}

}

Drawing Shapes

Some problems are better visualized. If the problem at hand looks faintly like geometrical objects, qt graphics
view is a good candidate. A graphics view arranges simple geometrical shapes on a scene. The user can interact
with these shapes or they are positioned using an algorithm. To populate a graphics view you need a graphics
view and a graphics scene. The scene is attached to the view and populates with graphics items. Here is a short
example. First the header file with the declaration of the view and scene.

class CustomWidgetV2 : public QWidget
{

Q_OBJECT
public:

explicit CustomWidgetV2(QWidget *parent = 0);
private:

QGraphicsView *m_view;
QGraphicsScene *m_scene;

};

In the implementation the scene gets attached to the view first. The view is a widget and get arranged in our
container widget. At the end we add a small rectangle to the scene, which then is rendered on the view.

#include "customwidgetv2.h"

CustomWidget::CustomWidget(QWidget *parent) :
QWidget(parent)

{
m_view = new QGraphicsView(this);
m_scene = new QGraphicsScene(this);
m_view->setScene(m_scene);

QVBoxLayout *layout = new QVBoxLayout(this);
layout->setMargin(0);
layout->addWidget(m_view);
setLayout(layout);

QGraphicsItem* rect1 = m_scene->addRect(0,0, 40, 40, Qt::NoPen, QColor("#FFBB33
→˓"));

rect1->setFlags(QGraphicsItem::ItemIsFocusable|QGraphicsItem::ItemIsMovable);
}

Adapting Data

Up to now we have mostly covered basic data types and how to use widgets and graphic views. Often in your
application you will need larger amount of structured data, which also has to be persistently stored. The data also

18 Chapter 2. Get Started

Qt5 Cadaques, Release 2015-03

needs to be displayed. For this Qt uses models. A simple model is the string list model, which gets filled with
strings and then attached to a list view.

m_view = new QListView(this);
m_model = new QStringListModel(this);
view->setModel(m_model);

QList<QString> cities;
cities << "Munich" << "Paris" << "London";
model->setStringList(cities);

Another popular way to store or retrieve data is SQL. Qt comes with SQLite embedded and also has support for
other database engines (MySQL, PostgresSQL, ...). First you need to create your database using a schema, like
this:

CREATE TABLE city (name TEXT, country TEXT);
INSERT INTO city value ("Munich", "Germany");
INSERT INTO city value ("Paris", "France");
INSERT INTO city value ("London", "United Kingdom");

To use sql we need to add the sql module to our .pro file

QT += sql

And then we can open our database using C++. First we need to retrieve a new database object for the specified
database engine. With this database object we open the database. For SQLite it’s enough to specify the path to
the database file. Qt provides some high-level database model, one of them is the table model, which uses a table
identifier and an option where clause to select the data. The resulting model can be attached to a list view as the
other model before.

QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");
db.setDatabaseName('cities.db');
if(!db.open()) {

qFatal("unable to open database");
}

m_model = QSqlTableModel(this);
m_model->setTable("city");
m_model->setHeaderData(0, Qt::Horizontal, "City");
m_model->setHeaderData(1, Qt::Horizontal, "Country");

view->setModel(m_model);
m_model->select();

For higher level of model operations Qt provides a sort file proxy model, which allows you in the basic form to
sort and filter another model.

QSortFilterProxyModel* proxy = new QSortFilterProxyModel(this);
proxy->setSourceModel(m_model);
view->setModel(proxy);
view->setSortingEnabled(true);

Filtering is done based on the column to be filters and a string as filter argument.

proxy->setFilterKeyColumn(0);
proxy->setFilterCaseSensitive(Qt::CaseInsensitive);
proxy->setFilterFixedString(QString)

The filter proxy model is much more powerful than demonstrated here. For now it is enough to remember its
exists.

Note: This was an overview of the different kind of classical application you could develop with Qt 5. The

2.3. Application Types 19

Qt5 Cadaques, Release 2015-03

desktop is moving and soon the mobile devices will be our desktop of tomorrow. Mobile devices have a different
user interface design. They are much more simplistic than desktop applications. They do one thing and they do
simply and focused. Animations are an important part of the experience. A user interface needs to feel alive and
fluent. The traditional Qt technologies are not well suited for this market.

Coming next: Qt Quick for the rescue.

Qt Quick Application

There is an inherent conflict in modern software development. The user interface is moving much faster than
our back-end services. In a traditional technology you develop the so called front-end at the same pace as the
back-end. This results in conflicts when customers want to change the user interface during a project, or develop
the idea of an user interface during the project. Agile projects, require agile methods.

Qt Quick provides a declarative environment where your user interface (the front-end) is declared like HTML and
your back-end is in native C++ code. This allows you to get the best of both worlds.

This is a simple Qt Quick UI below

import QtQuick 2.5

Rectangle {
width: 240; height: 1230
Rectangle {

width: 40; height: 40
anchors.centerIn: parent
color: '#FFBB33'

}
}

The declaration language is called QML and it needs a runtime to execute in. Qt provides a standard runtime
called qmlscene but it’s also not so difficult to write a custom runtime. For this we need a quick view and set
the main QML document as source. The only thing left is to show the user interface.

QQuickView* view = new QQuickView();
QUrl source = QUrl::fromLocalFile("main.qml");
view->setSource(source);
view.show();

Coming back to our earlier examples. In one example we used a C++ city model. It would be great if we could
use this model inside our declarative QML code.

To enable this, we first code our front-end to see how we would want to use a city model. In this case the front-end
expects a object named cityModel which we can use inside a list view.

import QtQuick 2.5

Rectangle {
width: 240; height: 120
ListView {

width: 180; height: 120
anchors.centerIn: parent
model: cityModel
delegate: Text { text: model.city }

}
}

To enable the cityModel we can mostly re-use our previous model and add a context property to our root
context (the root context is the other root-element in the main document)

20 Chapter 2. Get Started

Qt5 Cadaques, Release 2015-03

m_model = QSqlTableModel(this);
... // some magic code
QHash<int, QByteArray> roles;
roles[Qt::UserRole+1] = "city";
roles[Qt::UserRole+2] = "country";
m_model->setRoleNames(roles);
view->rootContext()->setContextProperty("cityModel", m_model);

Hint: This is not completely correct, as the SQL table model contains the data in columns and a QML model
expects the data as roles. So there needs to be a mapping between columns and roles. Please see QML and
QSqlTableModel wiki page.

Summary

We have seen how to install the Qt SDK and how to create our first application. Then we walked you through
the different application types to give you an overview of Qt, showing off some features Qt offers for application
development. I hope you got a good impression that Qt is a very rich user interface toolkit and offers everything an
application developer can hope for and more. Still, Qt does not lock you into specific libraries, as you always can
use other libraries or extend Qt yourself. It is also rich when it comes to supporting different application models:
console, classical desktop user interface and touch user interface.

2.4. Summary 21

http://wiki.qt.io/QML_and_QSqlTableModel
http://wiki.qt.io/QML_and_QSqlTableModel

Qt5 Cadaques, Release 2015-03

22 Chapter 2. Get Started

CHAPTER 3

Qt Creator IDE

Section author: jryannel

Qt Creator is the default integrated development environment for Qt. It’s written from Qt developers for Qt
developers. The IDE is available on all major desktop platforms, e.g. Windows/Mac/Linux. We have already seen
customers using Qt Creator on an embedded device. Qt Creator has a lean efficient user interface and it really
shines in making the developer productive. Qt Creator can be used to run your Qt Quick user interface but also to
compile c++ code and this for your host system or for another device using a cross-compiler.

Note: The source code of this chapter can be found in the assets folder.

The User Interface

When starting Qt Creator you are greeted by the Welcome screen. There you will find the most important hints on
how to continue inside Qt Creator and your recently used projects. You will also see the sessions list, which might
be empty for you. A session is a collection of projects stored for your reference. This comes really handy when
you have several customers with larger projects.

On the left side you will see the mode-selector. The mode selectors contain typical steps from your work flow.

• Welcome mode: For your orientation.

• Edit mode: Focus on the code

• Design mode: Focus on the UI design

23

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

• Debug mode: Retrieve information about a running application

• Projects mode: Modify your projects run and build configuration

• Analyze mode: For detecting memory leaks and profiling

• Help mode: Easy access to the Qt documentation

Below the mode-selectors you will find the actual project-configuration selector and the run/debug

Most of the time you will be in the edit mode with the code-editor in the central panel. From time to time, you will
visit the Projects mode when you need to configure your project. And then you press Run. Qt Creator is smart
enough to ensure you project is fully built before running it.

In the bottom are the output panes for issues, application messages, compile messages, and other messages.

Registering your Qt Kit

The Qt Kit is probably the most difficult aspect when it comes for working with Qt Creator initially. A Qt Kit is a
set of a Qt version, compiler and device and some other settings. It is used to uniquely identify the combination
of tools for your project build. A typical kit for the desktop would contain a GCC compiler and a Qt version (e.g.
Qt 5.1.1) and a device (“Desktop”). After you have created a project you need to assign a kit to a project before
qt creator can build the project. Before you are able to create a kit first you need to have a compiler installed
and have a Qt version registered. A Qt version is registered by specifying the path to the qmake executable. Qt
Creator then queries qmake for information required to identify the Qt version.

Adding a kit and registering a Qt version is done in the Settings → Build & Run entry. There you can also see
which compilers are registered.

Note: Please first check if your Qt Creator has already the correct Qt version registered and then ensure a Kit for
your combination of compiler and Qt and device is specified. You can not build a project without a kit.

Managing Projects

Qt Creator manages your source code in projects. You can create a new project by using File → New File or
Project. When you create a project you have many choices of application templates. Qt Creator is capable of
creating desktop, mobile applications. Application which use Widgets or Qt Quick or Qt Quick and controls or
even bare-bone projects. Also project for HTML5 and python are supported. For a beginner it is difficult to
choose, so we pick three project types for you.

• Applications / Qt Quick 2.0 UI: This will create a QML/JS only project for you, without any C++ code.
Take this if you want to sketch a new user interface or plan to create a modern UI application where the
native parts are delivered by plug-ins.

24 Chapter 3. Qt Creator IDE

Qt5 Cadaques, Release 2015-03

• Libraries / Qt Quick 2.0 Extension Plug-in: Use this wizard to create a stub for a plug-in for your Qt
Quick UI. A plug-in is used to extend Qt Quick with native elements.

• Other Project / Empty Qt Project: A bare-bone empty project. Take this if you want to code your
application with c++ from scratch. Be aware you need to know what you are doing here.

Note: During the first parts of the book we will mainly use the Qt Quick 2.0 UI project type. Later to describe
some c++ aspects we will use the Empty-Qt-Project type or something similar. For extending Qt Quick with our
own native plug-ins we will use the Qt Quick 2.0 Extension Plug-in wizard type.

Using the Editor

When you open a project or you just created a new project Qt Creator will switch to the edit mode. You should
see on the left your project files and in the center area the code editor. Selecting files on the left will open them
in the editor. The editor provides syntax highlighting, code-completion and quick-fixes. Also it supports several
commands for code refactoring. When working with the editor you will have the feeling that everything reacts
immediately. This is thanks to the developers of Qt Creator which made the tool feel really snappy.

Locator

The locator is a central component inside Qt Creator. It allows developers to navigate fast to specific locations
inside the source code or inside the help. To open the locator press Ctrl+K.

A pop-up is coming from the bottom left and shows a list of options. If you just search a file inside your project
just hit the first letter from the file name. The locator also accepts wild-cards, so *main.qml will also work.
Otherwise you can also prefix your search to search for specific content type.

Please try it out. For example to open the help for the QML element Rectangle open the locator and type ?
rectangle. While you type the locator will update the suggestions until you found the reference you are
looking for.

3.4. Using the Editor 25

Qt5 Cadaques, Release 2015-03

Debugging

Qt Creator comes with C++ and QML debugging support.

Note: Hmm, I just realized I have not used debugging a lot. I hope this is a good sign. Need to ask someone to
help me out here. In the meantime have a look at the Qt Creator documentation.

Shortcuts

Shortcuts are the difference between a nice to use system and a professional system. As a professional you spend
hundred of hours in front of your application. Each shortcut which makes your work-flow faster counts. Luckily
the developers of Qt Creator think the same and have added literally hundreds of shortcuts to the application.

To get started we have collection some basic shortcuts (in Windows notation):

• Ctrl+B - Build project

• Ctrl+R - Run Project

• Ctrl+Tab - Switch between open documents

• Ctrl+K - Open Locator

• Esc - Go back (hit several times and you are back in the editor)

• F2 - Follow Symbol under cursor

• F4 - Switch between header and source (only useful for c++ code)

List of Qt Creator shortcuts from the documentation.

Note: You can edit the shortcuts from inside creator using the settings dialog.

26 Chapter 3. Qt Creator IDE

http://http://doc.qt.io/qtcreator/index.html
http://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html

CHAPTER 4

Quick Starter

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

This chapter provides an overview of QML, the declarative user interface language used in Qt 5. We will discuss
the QML syntax, which is a tree of elements, followed by an overview of the most important basic elements. Later
we will briefly look at how to create our own elements, called components and how to transform elements using
property manipulations. Towards the end we will look how to arrange elements together in a layout and finally
have a look at elements where the user can provide input.

QML Syntax

QML is a declarative language used to describe the user interface of your application. It breaks down the user
interface into smaller elements, which can be combined to components. QML describes the look and the behavior
of these user interface elements. This user interface description can be enriched with JavaScript code to provide
simple but also more complex logic. In this perspective it follows the HTML-JavaScript pattern but QML is
designed from the ground up to describe user interfaces not text-documents.

In its simplest way QML is a hierarchy of elements. Child elements inherit the coordinate system from the parent.
An x,y coordinate is always relative to the parent.

Let’s start with a simple example of a QML file to explain the different syntax.

// RectangleExample.qml

import QtQuick 2.5

// The root element is the Rectangle
Rectangle {

// name this element root
id: root

// properties: <name>: <value>
width: 120; height: 240

// color property
color: "#4A4A4A"

// Declare a nested element (child of root)
Image {

id: triangle

27

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

// reference the parent
x: (parent.width - width)/2; y: 40

source: 'assets/triangle_red.png'
}

// Another child of root
Text {

// un-named element

// reference element by id
y: triangle.y + triangle.height + 20

// reference root element
width: root.width

color: 'white'
horizontalAlignment: Text.AlignHCenter
text: 'Triangle'

}
}

• The import statement imports a module in a specific version. In general you always want to import
QtQuick 2.0 as your initial set of elements

• Comments can be made using // for single line comments or /* */ for multi-line comments. Just like in
C/C++ and JavaScript

• Every QML file needs to have exactly one root element, like HTML

• An element is declared by its type followed by { }

• Elements can have properties, they are in the form name : value

• Arbitrary elements inside a QML document can be accessed by using their id (an unquoted identifier)

• Elements can be nested, meaning a parent element can have child elements. The parent element can be
accessed using the parent keyword

28 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

Tip: Often you want to access a particular element by id or a parent element using the parent keyword. So it’s
good practice to name your root element “root” using id: root. Then you don’t have to think about how the
root element is named in your QML document.

Hint: You can run the example using the Qt Quick runtime from the command line from your OS like this:

$ $QTDIR/bin/qmlscene RectangleExample.qml

Where you need to replace the $QTDIR to the path to your Qt installation. The qmlscene executable initializes the
Qt Quick runtime and interprets the provided QML file.

In Qt Creator you can open the corresponding project file and run the document RectangleExample.qml.

Properties

Elements are declared by using their element name but are defined by using their properties or by creating custom
properties. A property is a simple key-value pair, e.g. width : 100, text: 'Greetings', color:
'#FF0000'. A property has a well-defined type and can have an initial value.

Text {
// (1) identifier
id: thisLabel

// (2) set x- and y-position
x: 24; y: 16

// (3) bind height to 2 * width
height: 2 * width

// (4) custom property
property int times: 24

// (5) property alias
property alias anotherTimes: thisLabel.times

// (6) set text appended by value
text: "Greetings " + times

// (7) font is a grouped property
font.family: "Ubuntu"
font.pixelSize: 24

// (8) KeyNavigation is an attached property
KeyNavigation.tab: otherLabel

// (9) signal handler for property changes
onHeightChanged: console.log('height:', height)

// focus is need to receive key events
focus: true

// change color based on focus value
color: focus?"red":"black"

}

Let’s go through the different features of properties:

4.1. QML Syntax 29

Qt5 Cadaques, Release 2015-03

1. id is a very special property-like value, it is used to reference elements inside a QML file (called “docu-
ment” in QML). The id is not a string type but rather an identifier and part of the QML syntax. An id
needs to be unique inside a document and it can’t be re-set to a different value, nor may it be queried. (It
behaves more like a pointer in the C++ world.)

2. A property can be set to a value, depending on its type. If no value is given for a property, an initial value
will be chosen. You need to consult the documentation of the particular element for more information about
the initial value of a property.

3. A property can depend on one or many other properties. This is called binding. A bound property is updated,
when its dependent properties change. It works like a contract, in this case the height should always be
two times the width.

4. Adding own properties to an element is done using the property qualifier followed by the type, the name
and the optional initial value (property <type> <name> : <value>). If no initial value is given
a system initial value is chosen.

Note: You can also declare one property to be the default property if no property name is given by
prepending the property declaration with the default keyword. This is used for example when you
add child elements, the child elements are added automatically to the default property children of type
list if they are visible elements.

5. Another important way of declaring properties is using the alias keyword (property alias
<name> : <reference>). The alias keyword allows us to forward a property of an object or
an object itself from within the type to an outer scope. We will use this technique later when defining com-
ponents to export the inner properties or element ids to the root level. A property alias does not need a type,
it uses the type of the referenced property or object.

6. The text property depends on the custom property times of type int. The int based value is automati-
cally converted to a string type. The expression itself is another example of binding and results into the
text being updated every time the times property changes.

7. Some properties are grouped properties. This feature is used when a property is more structured and related
properties should be grouped together. Another way of writing grouped properties is font { family:
"Ubuntu"; pixelSize: 24 }.

8. Some properties are attached to the element itself. This is done for global relevant elements which ap-
pear only once in the application (e.g. keyboard input). The writing is <Element>.<property>:
<value>.

9. For every property you can provide a signal handler. This handler is called after the property changes. For
example here we want to be notified whenever the height changes and use the built-in console to log a
message to the system.

Warning: An element id should only be used to reference elements inside your document (e.g. the current
file). QML provides a mechanism called dynamic-scoping where later loaded documents overwrite the element
id’s from earlier loaded documents. This makes it possible to reference element id’s from earlier loaded
documents, if they are not yet overwritten. It’s like creating global variables. Unfortunately this frequently
leads to really bad code in practice, where the program depends on the order of execution. Unfortunately this
can’t be turned off. Please only use this with care or even better don’t use this mechanism at all. It’s better
to export the element you want to provide to the outside world using properties on the root element of your
document.

Scripting

QML and JavaScript (also known as ECMAScript) are best friends. In the JavaScript chapter we will go into more
detail on this symbiosis. Currently we just want to make you aware about this relationship.

30 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

Text {
id: label

x: 24; y: 24

// custom counter property for space presses
property int spacePresses: 0

text: "Space pressed: " + spacePresses + " times"

// (1) handler for text changes
onTextChanged: console.log("text changed to:", text)

// need focus to receive key events
focus: true

// (2) handler with some JS
Keys.onSpacePressed: {

increment()
}

// clear the text on escape
Keys.onEscapePressed: {

label.text = ''
}

// (3) a JS function
function increment() {

spacePresses = spacePresses + 1
}

}

1. The text changed handler onTextChanged prints the current text every-time the text changed due to a
space-bar key pressed

2. When the text element receives the space-bar key (because the user pressed the space-bar on the keyboard)
we call a JavaScript function increment().

3. Definition of a JavaScript function in the form of function <name>(<parameters>) { ... },
which increments our counter spacePressed. Every time spacePressed is incremented, bound prop-
erties will also be updated.

Note: The difference between the QML : (binding) and the JavaScript = (assignment) is, that the binding is a
contract and keeps true over the lifetime of the binding, whereas the JavaScript assignment (=) is a one time value
assignment. The lifetime of a binding ends, when a new binding is set to the property or even when a JavaScript
value is assigned is to the property. For example a key handler setting the text property to an empty string would
destroy our increment display:

Keys.onEscapePressed: {
label.text = ''

}

After pressing escape, pressing the space-bar will not update the display anymore as the previous binding of the
text property (text: “Space pressed: ” + spacePresses + ” times”) was destroyed.

When you have conflicting strategies to change a property as in this case (text updated by a change to a property
increment via a binding and text cleared by a JavaScript assignment) then you can’t use bindings! You need to use
assignment on both property change paths as the binding will be destroyed by the assignment (broken contract!).

4.1. QML Syntax 31

Qt5 Cadaques, Release 2015-03

Basic Elements

Elements can be grouped into visual and non-visual elements. A visual element (like the Rectangle) has a
geometry and normally presents an area on the screen. A non-visual element (like a Timer) provides general
functionality, normally used to manipulate the visual elements.

Currently, we will focus on the fundamental visual elements, such as Item, Rectangle, Text, Image and
MouseArea.

Item Element

Item is the base element for all visual elements as such all other visual elements inherit from Item. It doesn’t
paint anything by itself but defines all properties which are common across all visual elements:

Group Properties
Geome-
try

x and y to define the top-left position, width and height for the expand of the element and
also the z stacking order to lift elements up or down from their natural ordering

Layout
handling

anchors (left, right, top, bottom, vertical and horizontal center) to position elements relative to
other elements with their margins

Key
handling

attached Key and KeyNavigation properties to control key handling and the input focus
property to enable key handling in the first place

Transfor-
mation

scale and rotate transformation and the generic transform property list for x,y,z
transformation and their transformOrigin point

Visual opacity to control transparency, visible to show/hide elements, clip to restrain paint
operations to the element boundary and smooth to enhance the rendering quality

State
defini-
tion

states list property with the supported list of states and the current state property as also the
transitions list property to animate state changes.

To better understand the different properties we will try to introduce them throughout this chapter in context of
the element presented. Please remember these fundamental properties are available on every visual element and
work the same across these elements.

Note: The Item element is often used as a container for other elements, similar to the div element in HTML.

Rectangle Element

The Rectangle extends Item and adds a fill color to it. Additionally it supports borders defined by
border.color and border.width. To create rounded rectangles you can use the radius property.

Rectangle {
id: rect1
x: 12; y: 12
width: 76; height: 96
color: "lightsteelblue"

}
Rectangle {

id: rect2
x: 112; y: 12
width: 76; height: 96
border.color: "lightsteelblue"
border.width: 4
radius: 8

}

32 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

Note: Valid colors values are colors from the SVG color names (see http://www.w3.org/TR/css3-color/
#svg-color). You can provide colors in QML in different ways, but the most common way is an RGB string
(‘#FF4444’) or as a color name (e.g. ‘white’).

Besides a fill color and a border the rectangle also supports custom gradients.

Rectangle {
id: rect1
x: 12; y: 12
width: 176; height: 96
gradient: Gradient {

GradientStop { position: 0.0; color: "lightsteelblue" }
GradientStop { position: 1.0; color: "slategray" }

}
border.color: "slategray"

}

A gradient is defined by a series of gradient stops. Each stop has a position and a color. The position marks the
position on the y-axis (0 = top, 1 = bottom). The color of the GradientStop marks the color at that position.

Note: A rectangle with no width/height set will not be visible. This happens often when you have several
rectangles width (height) depending on each other and something went wrong in your composition logic. So
watch out!

Note: It is not possible to create an angled gradient. For this it’s better to use predefined images. One possibility
would be to just rotate the rectangle with the gradient, but be aware the geometry of an rotated rectangle will not
change and thus will lead to confusion as the geometry of the element is not the same as the visible area. From

4.2. Basic Elements 33

http://www.w3.org/TR/css3-color/#svg-color
http://www.w3.org/TR/css3-color/#svg-color

Qt5 Cadaques, Release 2015-03

the authors perspective it’s really better to use designed gradient images in that case.

Text Element

To display text, you can use the Text element. Its most notable property is the text property of type string.
The element calculates its initial width and height based on the given text and the font used. The font can be
influenced using the font property group (e.g. font.family, font.pixelSize, ...). To change the color of
the text just use the color property.

Text {
text: "The quick brown fox"
color: "#303030"
font.family: "Ubuntu"
font.pixelSize: 28

}

Text can be aligned to each side and the center using the horizontalAlignment and
verticalAlignment properties. To further enhance the text rendering you can use the style and
styleColor property , which allows you render the text in outline, raised and sunken mode. For longer text
you often want to define a break position like A very ... long text, this can be achieved using the elide property.
The elide property allows you to set the elide position to the left, right or middle of your text. In case you don’t
want the ‘...’ of the elide mode to appear but still want to see the full text you can also wrap the text using the
wrapMode property (works only when width is explicitly set):

Text {
width: 40; height: 120
text: 'A very long text'
// '...' shall appear in the middle
elide: Text.ElideMiddle
// red sunken text styling
style: Text.Sunken
styleColor: '#FF4444'
// align text to the top
verticalAlignment: Text.AlignTop
// only sensible when no elide mode
// wrapMode: Text.WordWrap

}

A Text element only displays the given text. It does not render any background decoration. Besides the rendered
text the Text element is transparent. It’s part of your overall design to provide a sensible background to the text
element.

34 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

Note: Be aware a Text initial width (height) is depending on the text string and on the font set. A Text element
with no width set and no text will not be visible, as the initial width will be 0.

Note: Often when you want to layout Text elements you need to differentiate between aligning the text inside
the Text element boundary box or to align the element boundary box itself. In the former you want to use the
horizontalAlignment and verticalAlignment properties and in the later case you want to manipulate
the element geometry or use anchors.

Image Element

An Image element is able to display images in various formats (e.g. PNG, JPG, GIF, BMP, WEBP). For the full
list of supported image formats, please consult the Qt documentation. Besides the obvious source property to
provide the image URL it contains a fillMode which controls the resizing behavior.

Image {
x: 12; y: 12
// width: 72
// height: 72
source: "assets/triangle_red.png"

}
Image {

x: 12+64+12; y: 12
// width: 72
height: 72/2
source: "assets/triangle_red.png"
fillMode: Image.PreserveAspectCrop
clip: true

}

Note: A URL can be a local path with forward slashes (”./images/home.png”) or a web-link (e.g. “http:
//example.org/home.png”).

Note: Image elements using PreserveAspectCrop should also enable the clipping to avoid image data
being rendered outside the Image boundaries. By default clipping is disabled (clip : false). You need
to enable clipping (clip : true) to constrain the painting to the elements bounding rectangle. This can be
used on any visual element.

Tip: Using C++ you are able to create your own image provider using QQmlImageProvider. This allows you to
create images on the fly and threaded image loading.

4.2. Basic Elements 35

http://example.org/home.png
http://example.org/home.png
http://doc.qt.io/qt-5//qqmlimageprovider.html

Qt5 Cadaques, Release 2015-03

MouseArea Element

To interact with these elements you often will use a MouseArea. It’s a rectangular invisible item in where you
can capture mouse events. The mouse area is often used together with a visible item to execute commands when
the user interacts with the visual part.

Rectangle {
id: rect1
x: 12; y: 12
width: 76; height: 96
color: "lightsteelblue"
MouseArea {

id: area
width: parent.width
height: parent.height
onClicked: rect2.visible = !rect2.visible

}
}

Rectangle {
id: rect2
x: 112; y: 12
width: 76; height: 96
border.color: "lightsteelblue"
border.width: 4
radius: 8

}

Note: This is an important aspect of Qt Quick, the input handling is separated from the visual presentation. By
this it allows you to show the user an interface element, but the interaction area can be larger.

Components

A component is a reusable element and QML provides different ways to create components. Currently we will
look only at the simplest form - a file based component. A file based component is created by placing a QML
element in a file and give the file an element name (e.g. Button.qml). You can use the component like every
other element from the QtQuick module, in our case you would use this in your code as Button { ... }.

For example, let’s create a rectangle containing a text componenet and a mouse area. This resembles a simple
button and doesn’t need to be more complicated for our purposes.

Rectangle { // our inlined button ui
id: button
x: 12; y: 12
width: 116; height: 26
color: "lightsteelblue"
border.color: "slategrey"

36 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

Text {
anchors.centerIn: parent
text: "Start"

}
MouseArea {

anchors.fill: parent
onClicked: {

status.text = "Button clicked!"
}

}
}

Text { // text changes when button was clicked
id: status
x: 12; y: 76
width: 116; height: 26
text: "waiting ..."
horizontalAlignment: Text.AlignHCenter

}

The UI will look similar to this. On the left the UI in the initial state, on the right after the button has been clicked.

Our task is now to extract the button UI in a reusable component. For this we shortly think about a possible API
for our button. You can do this by imagining how someone else should use your button. Here’s what I came up
with:

// minimal API for a button
Button {

text: "Click Me"
onClicked: { // do something }

}

I would like to set the text using a text property and to implement my own click handler. Also I would expect
the button to have a sensible initial size, which I can overwrite (e.g. with width: 240 for example).

To achieve this we create a Button.qml file and copy our button UI inside. Additionally we need to export the
properties a user might want to change on the root level.

// Button.qml

import QtQuick 2.5

Rectangle {
id: root
// export button properties
property alias text: label.text
signal clicked

width: 116; height: 26
color: "lightsteelblue"

4.3. Components 37

Qt5 Cadaques, Release 2015-03

border.color: "slategrey"

Text {
id: label
anchors.centerIn: parent
text: "Start"

}
MouseArea {

anchors.fill: parent
onClicked: {

root.clicked()
}

}
}

We have exported the text and clicked signal on the root level. Typically we name our root element root to make
the referencing easier. We use the alias feature of QML, which is a way to export properties inside nested QML
elements to the root level and make this available for the outside world. It is important to know, that only the root
level properties can be accessed from outside this file by other components.

To use our new Button element we can simply declare it in our file. So the earlier example will become a little
bit simplified.

Button { // our Button component
id: button
x: 12; y: 12
text: "Start"
onClicked: {

status.text = "Button clicked!"
}

}

Text { // text changes when button was clicked
id: status
x: 12; y: 76
width: 116; height: 26
text: "waiting ..."
horizontalAlignment: Text.AlignHCenter

}

Now you can use as many buttons as you like in your UI by just using Button { ... }. A real button could
be more complex, e.g providing feedback when clicked or showing a nicer decoration.

Note: Personally you could even go a step further and use an item as a root element. This prevents users to
change the color of our designed button, and provides us more control about the exported API. The target should
be to export a minimal API. Practically this means we would need to replace the root Rectangle with an Item
and make the rectangle a nested element in the root item.

Item {
id: root
width: 116; height: 26

property alias text: label.text
signal clicked

Rectangle {

38 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

anchors.fill parent
color: "lightsteelblue"
border.color: "slategrey"

}
...

}

With this technique, it is easy to create a whole series of reusable components.

Simple Transformations

A transformation manipulates the geometry of an object. QML Items can in general be translated, rotated and
scaled. There is a simple form of these operations and a more advanced way.

Let’s start with the simple transformations. Here is our scene as our starting point.

A simple translation is done via changing the x,y position. A rotation is done using the rotation property.
The value is provided in degrees (0 .. 360). A scaling is done using the scale property and a value <1 means
the element is scaled down and >1 means the element is scaled up. The rotation and scaling does not change your
geometry. The items x,y and width/height haven’t changed. Just the painting instructions are transformed.

Before we show off the example I would like to introduce a little helper: The ClickableImage element. The
ClickableImage is just an image with a mouse area. This brings up a useful rule of thumb - if you have copied
a chunk of code three times, extract it into a component.

// ClickableImage.qml

// Simple image which can be clicked

import QtQuick 2.5

Image {
id: root
signal clicked

MouseArea {
anchors.fill: parent
onClicked: root.clicked()

}
}

4.4. Simple Transformations 39

Qt5 Cadaques, Release 2015-03

We use our clickable image to present three objects (box, circle, triangle). Each object performs a simple trans-
formation when clicked. Clicking the background will reset the scene.

// transformation.qml

import QtQuick 2.5

Item {
// set width based on given background
width: bg.width
height: bg.height

Image { // nice background image
id: bg
source: "assets/background.png"

}

MouseArea {
id: backgroundClicker
// needs to be before the images as order matters
// otherwise this mousearea would be before the other elements
// and consume the mouse events
anchors.fill: parent
onClicked: {

// reset our little scene
circle.x = 84
box.rotation = 0
triangle.rotation = 0
triangle.scale = 1.0

}
}

ClickableImage {
id: circle
x: 84; y: 68
source: "assets/circle_blue.png"
antialiasing: true
onClicked: {

// increase the x-position on click
x += 20

}
}

ClickableImage {
id: box
x: 164; y: 68
source: "assets/box_green.png"
antialiasing: true
onClicked: {

// increase the rotation on click
rotation += 15

}
}

ClickableImage {
id: triangle
x: 248; y: 68
source: "assets/triangle_red.png"
antialiasing: true
onClicked: {

// several transformations
rotation += 15

40 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

scale += 0.05
}

}

function _test_transformed() {
circle.x += 20
box.rotation = 15
triangle.scale = 1.2
triangle.rotation = -15

}

function _test_overlap() {
circle.x += 40
box.rotation = 15
triangle.scale = 2.0
triangle.rotation = 45

}

}

The circle increments the x-position on each click and the box will rotate on each click. The triangle will rotate
and scale the image down on each click, to demonstrate a combined transformation. For the scaling and rotation
operation we set antialiasing: true to enable anti-aliasing, which is switched off (same as the clipping
property clip) for performance reasons. In your own work, when you see some rasterized edges in your graphics,
then you should probably switch smooth on.

Note: To achieve better visual quality when scaling images it is recommended to scale images down instead of
up. Scaling an image up with a larger scaling factor will result into scaling artifacts (blurred image). When scaling
an image you should consider using antialiasing : true to enable the usage of a higher quality filter.

The background MouseArea covers the whole background and resets the object values.

Note: Elements which appear earlier in the code have a lower stacking order (called z-order). If you click long
enough on circle you will see it moves below box. The z-order can also be manipulated by the z-property
of an Item.

This is because box appears later in the code. The same applies also to mouse areas. A mouse area later in the
code will overlap (and thus grab the mouse events) of a mouse area earlier in the code.

Please remember: The order of elements in the document matters.

4.4. Simple Transformations 41

Qt5 Cadaques, Release 2015-03

Positioning Elements

There are a number of QML elements used to position items. These are called positioners and the following are
provided in the QtQuick module Row, Column, Grid and Flow. They can be seen showing the same contents
in the illustration below.

Note: Before we go into details, let me introduce some helper elements. The red, blue, green, lighter and darker
squares. Each of these components contains a 48x48 pixels colorized rectangle. As reference here is the source
code for the RedSquare:

// RedSquare.qml

import QtQuick 2.5

Rectangle {
width: 48
height: 48
color: "#ea7025"
border.color: Qt.lighter(color)

}

Please note the use of Qt.lighter(color) to produce a lighter border color based on the fill color. We will
use these helpers in the next examples to make the source code more compact and hopefully readable. Please
remember, each rectangle is initial 48x48 pixels.

The Column element arranges child items into a column by stacking them on top of each other. The spacing
property can be used to distance each of the child elements from each other.

// column.qml

import QtQuick 2.5

DarkSquare {
id: root
width: 120
height: 240

Column {
id: row
anchors.centerIn: parent

42 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

spacing: 8
RedSquare { }
GreenSquare { width: 96 }
BlueSquare { }

}
}

The Row element places its child items next to each other, either from the left to the right, or from the right to the
left, depending on the layoutDirection property. Again, spacing is used to separate child items.

// row.qml

import QtQuick 2.5

BrightSquare {
id: root
width: 400; height: 120

Row {
id: row
anchors.centerIn: parent
spacing: 20
BlueSquare { }
GreenSquare { }

4.5. Positioning Elements 43

Qt5 Cadaques, Release 2015-03

RedSquare { }
}

}

The Grid element arranges its children in a grid, by setting the rows and columns properties, the number or
rows or columns can be constrained. By not setting either of them, the other is calculated from the number of
child items. For instance, setting rows to 3 and adding 6 child items will result in 2 columns. The properties flow
and layoutDirection are used to control the order in which the items are added to the grid, while spacing
controls the amount of space separating the child items.

// grid.qml

import QtQuick 2.5

BrightSquare {
id: root
width: 160
height: 160

Grid {
id: grid
rows: 2
columns: 2
anchors.centerIn: parent
spacing: 8
RedSquare { }
RedSquare { }
RedSquare { }
RedSquare { }

}

}

The final positioner is Flow. It adds its child items in a flow. The direction of the flow is controlled using flow
and layoutDirection. It can run sideways or from the top to the bottom. It can also run from left to right
or in the opposite direction. As the items are added in the flow, they are wrapped to form new rows or columns
as needed. In order for a flow to work, it must have a width or a height. This can be set either directly, or though
anchor layouts.

// flow.qml

import QtQuick 2.5

BrightSquare {

44 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

id: root
width: 160
height: 160

Flow {
anchors.fill: parent
anchors.margins: 20
spacing: 20
RedSquare { }
BlueSquare { }
GreenSquare { }

}
}

An element often used with positioners is the Repeater. It works like a for-loop and iterates over a model. In
the simplest case a model is just a value providing the amount of loops.

// repeater.qml

4.5. Positioning Elements 45

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5

DarkSquare {
id: root
width: 252
height: 252
property variant colorArray: ["#00bde3", "#67c111", "#ea7025"]

Grid{
anchors.fill: parent
anchors.margins: 8
spacing: 4
Repeater {

model: 16
Rectangle {

width: 56; height: 56
property int colorIndex: Math.floor(Math.random()*3)
color: root.colorArray[colorIndex]
border.color: Qt.lighter(color)
Text {

anchors.centerIn: parent
color: "#f0f0f0"
text: "Cell " + index

}
}

}
}

}

In this repeater example, we use some new magic. We define our own color property, which we use as an array
of colors. The repeater creates a series of rectangles (16, as defined by the model). For each loop he creates the
rectangle as defined by the child of the repeater. In the rectangle we chose the color by using JS math functions
Math.floor(Math.random()*3). This gives us a random number in the range from 0..2, which we use to
select the color from our color array. As noted earlier, JavaScript is a core part of Qt Quick, as such the standard
libraries are available for us.

A repeater injects the index property into the repeater. It contains the current loop-index. (0,1,..15). We can use
this to make our own decisions based on the index, or in our case to visualize the current index with the Text
element.

Note: More advanced handling of larger models and kinetic views with dynamic delegates is covered in an own
model-view chapter. Repeaters are best used when having a small amount of static data to be presented.

Layout Items

Todo

do we need to remove all uses of anchors earlier?

QML provides a flexible way to layout items using anchors. The concept of anchoring is part of the Item
fundamental properties and available to all visual QML elements. An anchors acts like a contract and is stronger
than competing geometry changes. Anchors are expressions of relativeness, you always need a related element to
anchor with.

An element has 6 major anchor lines (top, bottom, left, right, horizontalCenter, verticalCenter). Additional there
is the baseline anchor for text in Text elements. Each anchor line comes with an offset. In the case of top, bottom,

46 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

left and right they are called margins. For horizontalCenter, verticalCenter and baseline they are called offsets.

1. An element fills a parent element

GreenSquare {
BlueSquare {

width: 12
anchors.fill: parent
anchors.margins: 8
text: '(1)'

}
}

2. An element is left aligned to the parent

GreenSquare {
BlueSquare {

width: 48
y: 8
anchors.left: parent.left
anchors.leftMargin: 8
text: '(2)'

}

4.6. Layout Items 47

Qt5 Cadaques, Release 2015-03

}

3. An element left side is aligned to the parents right side

GreenSquare {
BlueSquare {

width: 48
anchors.left: parent.right
text: '(3)'

}
}

4. Center aligned elements. Blue1 is horizontal centered on the parent. Blue2 is also horizontal centered
but on Blue1 and it’s top is aligned to the Blue1 bottom line.

GreenSquare {
BlueSquare {

id: blue1
width: 48; height: 24
y: 8
anchors.horizontalCenter: parent.horizontalCenter

}
BlueSquare {

id: blue2
width: 72; height: 24
anchors.top: blue1.bottom
anchors.topMargin: 4
anchors.horizontalCenter: blue1.horizontalCenter
text: '(4)'

}
}

5. An element is centered on a parent element

GreenSquare {
BlueSquare {

width: 48
anchors.centerIn: parent
text: '(5)'

}
}

6. An element is centered with an left-offset on a parent element using horizontal and vertical center lines

GreenSquare {
BlueSquare {

width: 48
anchors.horizontalCenter: parent.horizontalCenter
anchors.horizontalCenterOffset: -12
anchors.verticalCenter: parent.verticalCenter
text: '(6)'

}
}

Note: Our squares have been enhanced to enable dragging. Try the example and drag around some squares.
You will see that (1) can’t be dragged as it’s anchored on all sides, sure you can drag the parent of (1) as it’s not
anchored at all. (2) can be vertically dragged as only the left side is anchored. Similar applies to (3). (4) can only
be dragged vertically as both squares are horizontal centered. (5) is centered on the parent and as such can’t be
dragged, similar applies to (7). Dragging an element means changing their x,y position. As anchoring is stronger
than geometry changes such as x,y, dragging is restricted by the anchored lines. We will see this effect later

48 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

when we discuss animations.

Input Elements

We have already used the MouseArea as a mouse input element. Next, we’ll focus on keyboard input. We start
off with the text editing elements: TextInput and TextEdit.

TextInput

The TextInput allows the user to enter a line of text. The element supports input constraints such as
validator, inputMask, and echoMode.

// textinput.qml

import QtQuick 2.5

Rectangle {
width: 200
height: 80
color: "linen"

TextInput {
id: input1
x: 8; y: 8
width: 96; height: 20
focus: true
text: "Text Input 1"

}

TextInput {
id: input2
x: 8; y: 36
width: 96; height: 20
text: "Text Input 2"

}
}

The user can click inside a TextInput to change the focus. To support switching the focus by keyboard, we can
use the KeyNavigation attached property.

// textinput2.qml

import QtQuick 2.5

Rectangle {
width: 200
height: 80
color: "linen"

4.7. Input Elements 49

Qt5 Cadaques, Release 2015-03

TextInput {
id: input1
x: 8; y: 8
width: 96; height: 20
focus: true
text: "Text Input 1"
KeyNavigation.tab: input2

}

TextInput {
id: input2
x: 8; y: 36
width: 96; height: 20
text: "Text Input 2"
KeyNavigation.tab: input1

}
}

The KeyNavigation attached property supports a preset of navigation keys where an element id is bound to
switch focus on the given key press.

A text input element comes with no visual presentation besides a blinking cursor and the entered text. For the
user to be able to recognize the element as an input element it needs some visual decoration, for example a simple
rectangle. When placing the TextInput inside an element you need make sure you export the major properties
you want others be able to access.

We move this piece of code into our own component called TLineEditV1 for reuse.

// TLineEditV1.qml

import QtQuick 2.5

Rectangle {
width: 96; height: input.height + 8
color: "lightsteelblue"
border.color: "gray"

property alias text: input.text
property alias input: input

TextInput {
id: input
anchors.fill: parent
anchors.margins: 4
focus: true

}
}

Note: If you want to export the TextInput completely, you can export the element by using property
alias input: input. The first input is the property name, where the 2nd input is the element id.

We rewrite our KeyNavigation example with the new TLineEditV1 component.

Rectangle {
...
TLineEditV1 {

id: input1
...

}
TLineEditV1 {

id: input2

50 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

...
}

}

And try the tab key for navigation. You will experience the focus does not change to input2. The simple use
of focus:true is not sufficient. The problem arises, that the focus was transferred to the input2 element
the top-level item inside the TlineEditV1 (our Rectangle) received focus and did not forward the focus to the
TextInput. To prevent this QML offers the FocusScope.

FocusScope

A focus scope declares that the last child element with focus:true receives the focus if the focus scope receives
the focus. So it’s forward the focus to the last focus requesting child element. We will create a 2nd version of our
TLineEdit component called TLineEditV2 using the focus scope as root element.

// TLineEditV2.qml

import QtQuick 2.5

FocusScope {
width: 96; height: input.height + 8
Rectangle {

anchors.fill: parent
color: "lightsteelblue"
border.color: "gray"

}

property alias text: input.text
property alias input: input

TextInput {
id: input
anchors.fill: parent
anchors.margins: 4
focus: true

}
}

Our example will now look like this:

Rectangle {
...
TLineEditV2 {

id: input1
...

}
TLineEditV2 {

id: input2
...

4.7. Input Elements 51

Qt5 Cadaques, Release 2015-03

}
}

Pressing the tab key now successfully switches the focus between the 2 components and the correct child element
inside the component is focused.

TextEdit

The TextEdit is very similar to TextInput and support a multi-line text edit field. It doesn’t have the text con-
straint properties as this depends on querying the painted size of the text (paintedHeight, paintedWidth).
We also create our own component called TTextEdit to provide a edit background and use the focus scope for
better focus forwarding.

// TTextEdit.qml

import QtQuick 2.5

FocusScope {
width: 96; height: 96
Rectangle {

anchors.fill: parent
color: "lightsteelblue"
border.color: "gray"

}

property alias text: input.text
property alias input: input

TextEdit {
id: input
anchors.fill: parent
anchors.margins: 4
focus: true

}
}

You can use it like the TLineEdit component

// textedit.qml

import QtQuick 2.5

Rectangle {
width: 136
height: 120
color: "linen"

TTextEdit {
id: input
x: 8; y: 8
width: 120; height: 104
focus: true
text: "Text Edit"

}
}

52 Chapter 4. Quick Starter

Qt5 Cadaques, Release 2015-03

Keys Element

The attached property Keys allows executing code based on certain key presses. For example to move a square
around and scale we can hook into the up, down, left and right keys to translate the element and the plus, minus
key to scale the element.

// keys.qml

import QtQuick 2.5

DarkSquare {
width: 400; height: 200

GreenSquare {
id: square
x: 8; y: 8

}
focus: true
Keys.onLeftPressed: square.x -= 8
Keys.onRightPressed: square.x += 8
Keys.onUpPressed: square.y -= 8
Keys.onDownPressed: square.y += 8
Keys.onPressed: {

switch(event.key) {
case Qt.Key_Plus:

square.scale += 0.2
break;

case Qt.Key_Minus:
square.scale -= 0.2
break;

}

}
}

Advanced Techniques

Todo

To be written

4.8. Advanced Techniques 53

Qt5 Cadaques, Release 2015-03

54 Chapter 4. Quick Starter

CHAPTER 5

Fluid Elements

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Till now, we have mostly looked at simple graphical elements and how to arrange and manipulate them. This
chapter is about how to control these changes in a way that a value of a property not just changes instantly,
it’s more how the value changes over time: an animation. This technology is one of the key foundations for
modern slick user interfaces and can be extended with a system to describe your user interface using states and
transitions. Each state defines a set of property changes and can be combined with animations on state changes,
called transitions.

Animations

Animations are applied to property changes. An animation defines the interpolation curve when for property
value changes to create smooth transitions from one value to another. An animation is defined by a series of target
properties to be animated, an easing curve for the interpolation curve and in the most cases a duration, which
defines the time for the property change. All animations in Qt Quick are controlled by the same timer, and are
therefore synchronized. This improves the performance and visual quality of animations.

Note: Animations control how property changes, i.e. value interpolation. This is a fundamental concept. QML is
based on elements, properties and scripting. Every element provides dozens of properties, each property is waiting
to get animated by you. During the book you will see this is a spectacular playing field. You will caught yourself at
looking at some animations and just admire their beauty and for sure also your creative genius. Please remember
then: Animations control property changes and every element has dozens of properties at your disposal.

Unlock the power!

// animation.qml

55

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5

Image {
id: root
source: "assets/background.png"

property int padding: 40
property int duration: 400
property bool running: false

Image {
id: box
x: root.padding;
y: (root.height-height)/2
source: "assets/box_green.png"

NumberAnimation on x {
to: root.width - box.width - root.padding
duration: root.duration
running: root.running

}
RotationAnimation on rotation {

to: 360
duration: root.duration
running: root.running

}
}

MouseArea {
anchors.fill: parent
onClicked: root.running = true

}

}

The example above shows a simple animation applied on the x and rotation property. Each animation has
a duration of 4000 milliseconds (msecs) and loops forever. The animation on x moves the x coordinate from
the object gradually over to 240px. The animation on rotation runs from the current angle to 360 degree. Both
animations run in parallel and are started as soon as the UI is loaded.

Now you can play around with the animation by changing the to and duration property or you could add
another animation for example on the opacity or even the scale. Combining these it could look like the
object is disappearing in the deep space. Try it out!

Animation Elements

There are several types of animation elements, each optimized for a specific use case. Here is a list of the most
prominent animations:

• PropertyAnimation - Animates changes in property values

• NumberAnimation - Animates changes in qreal-type values

• ColorAnimation - Animates changes in color values

• RotationAnimation - Animates changes in rotation values

Besides these basic and widely used animation elements, Qt Quick provides also more specialized animations for
specific use cases:

• PauseAnimation - Provides a pause for an animation

• SequentialAnimation - Allows animations to be run sequentially

56 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

• ParallelAnimation - Allows animations to be run in parallel

• AnchorAnimation - Animates changes in anchor values

• ParentAnimation - Animates changes in parent values

• SmoothedAnimation - Allows a property to smoothly track a value

• SpringAnimation - Allows a property to track a value in a spring-like motion

• PathAnimation - Animates an item along a path

• Vector3dAnimation - Animates changes in QVector3d values

We will learn later how to create a sequence of animations. While working on more complex animations there
comes up the need to change a property or to run a script during an an ongoing animation. For this Qt Quick offers
the action elements, which can be used everywhere where the other animation elements can be used:

• PropertyAction - Specifies immediate property changes during animation

• ScriptAction - Defines scripts to be run during an animation

The major animation types will be discussed during this chapter using small focused examples.

Applying Animations

Animation can be applied in several ways:

• Animation on property - runs automatically after element is fully loaded

• Behavior on property - runs automatically when the property value changes

• Standalone Animation - runs when animation is explicitly started using start() or running is set to
true (e.g. by a property binding)

Later we see also how animations can be used inside state transitions.

Extended ClickableImage Version 2

To demonstrate the usage of animations we reuse our ClickableImage component from an earlier chapter
and extended it with a text element.
// ClickableImageV2.qml
// Simple image which can be clicked

import QtQuick 2.5

Item {
id: root
width: container.childrenRect.width
height: container.childrenRect.height
property alias text: label.text
property alias source: image.source
signal clicked

Column {
id: container
Image {

id: image
}
Text {

id: label
width: image.width
horizontalAlignment: Text.AlignHCenter
wrapMode: Text.WordWrap
color: "#ececec"

}
}

MouseArea {
anchors.fill: parent
onClicked: root.clicked()

}
}

5.1. Animations 57

Qt5 Cadaques, Release 2015-03

To organize the element below the image we used a Column positioner and calculated the width and height
based on the column’s childrenRect property. We exposed two properties: text and the image source
as also the clicked signal. We also wanted that the text is as wide as the image and it should wrap. We
achieve the latter by using the Text elements wrapMode property.

Note: Due to the inversion of the geometry-dependency (parent geometry depends on child geometry) we
can’t set a width/height on the ClickableImageV2, as this will break our width/height binding. This is a
limitation on our internal design and as a designer of components you should be aware of this. Normally you
should prefer the child’s geometry to depend on the parent’s geometry.

The objects ascending.

The three objects are all at the same y-position (y=200). They need to travel all to y=40. Each of them using a
different method with different side-effects and features.

ClickableImageV2 {
id: greenBox
x: 40; y: root.height-height
source: "assets/box_green.png"
text: "animation on property"
NumberAnimation on y {

to: 40; duration: 4000
}

}

58 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

1st object

The 1st object travels using the Animation on <property> strategy. The animation starts immediately.
When an object is clicked their y-position is reset to the start position, this applies to all objects. On the 1st object
the reset does not have any effect as long as the animation is running. It’s even disturbing as the y-position is set
for a fraction of a second to a new value before the animation starts. Such competing property changes should be
avoided.

ClickableImageV2 {
id: blueBox
x: (root.width-width)/2; y: root.height-height
source: "assets/box_blue.png"
text: "behavior on property"
Behavior on y {

NumberAnimation { duration: 4000 }
}

onClicked: y = 40
// random y on each click

// onClicked: y = 40+Math.random()*(205-40)
}

2nd object

The 2nd object travels using a behavior on animation. This behavior tells the property, every time the
property value changes, it changes through this animation. The behavior can be disabled by enabled :
false on the Behavior element. The object will start traveling when you click it (y-position is then set to
40). Another click has no influence as the position is already set. You could try to use a random value (e.g.
40+(Math.random()*(205-40)) for the y-position. You will see that the object will always animate to the
new position and adapt its speed to match the 4 seconds to the destination defined by the animations duration.

ClickableImageV2 {
id: redBox
x: root.width-width-40; y: root.height-height
source: "assets/box_red.png"
onClicked: anim.start()

// onClicked: anim.restart()

text: "standalone animation"

NumberAnimation {
id: anim
target: redBox
properties: "y"
to: 40
duration: 4000

}
}

3rd object

The 3rd object uses a standalone animation. The animation is defined as its own element and could be
everywhere in the document. The click will start the animation using the animations function start(). Each
animation has a start(), stop(), resume(), restart() function. The animation itself contains much more information
then the other animation types earlier. We need to define the target and properties to declare the target element to
be animated and which properties we want to animate. We need to define a to value and in this case we define
also a from value to allow a re-start of the animation.

5.1. Animations 59

Qt5 Cadaques, Release 2015-03

A click on the background will reset all objects to their initial position. The 1st object can’t be restarted except by
re-starting the program which triggers the re-loading of the element.

Note: Another way to start/stop an animation is to bind a property to the running property of an animation.
This is especially useful when the user-input is in control of properties:

NumberAnimation {
...
// animation runs when mouse is pressed
running: area.pressed

}
MouseArea {

id: area
}

Easing Curves

The value change of a property can be controlled by an animation. Easing attributes allows influencing the inter-
polation curve of a property change. All animations we have defined by now use a linear interpolation because the
initial easing type of an animation is Easing.Linear. It’s best visualized with a small plot, where the y-axis
is the property to be animated and the x-axis is the time (duration). A linear interpolation would draw a straight
line from the from value at the start of the animation to the to value at the end of the animation. So the easing
type defines the curve of change. Easing types are carefully chosen to support a natural fit for a moving object,
for example when a page slides out. Initially the page should slide out slowly and then gaining the speed to finally
slide out on high speed, similar to turning the page of a book.

Note: Animations should not be overused. As other aspects of UI design also animations should be designed

60 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

carefully and support the UI flow and not dominate it. The eye is very sensitive to moving objects and animations
can easily distract the user.

In the next example we will try some easing curves. Each easing curve is displayed by a click-able image and,
when clicked, will set a new easing type on the square animation and then trigger a restart() to run the
animation with the new curve.

The code for this example was made a little bit more complicated.We first create a grid of EasingTypes and
a Box which is controlled by the easing types. A easing type just displays the curve which the box shall use
for its animation. When the user clicks on an easing curve the box moves in a direction according to the easing
curve. The animation itself is a standalone-animation with the target set to the box and configured for x-property
animation with a duration of 2 secs.

Note: The internals of the EasingType renders the curve in real time and the interested reader can look it up in
the EasingCurves example.

// EasingCurves.qml

import QtQuick 2.5
import QtQuick.Layouts 1.2

Rectangle {
id: root
width: childrenRect.width
height: childrenRect.height

color: '#4a4a4a'
gradient: Gradient {

GradientStop { position: 0.0; color: root.color }
GradientStop { position: 1.0; color: Qt.lighter(root.color, 1.2) }

}

ColumnLayout {

Grid {
spacing: 8
columns: 5
EasingType {

easingType: Easing.Linear
title: 'Linear'
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.InExpo

5.1. Animations 61

Qt5 Cadaques, Release 2015-03

title: "InExpo"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.OutExpo
title: "OutExpo"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.InOutExpo
title: "InOutExpo"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.InOutCubic
title: "InOutCubic"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.SineCurve
title: "SineCurve"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.InOutCirc
title: "InOutCirc"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.InOutElastic
title: "InOutElastic"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

easingType: Easing.InOutBack
title: "InOutBack"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}
EasingType {

62 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

easingType: Easing.InOutBounce
title: "InOutBounce"
onClicked: {

animation.easing.type = easingType
box.toggle = !box.toggle

}
}

}
Item {

height: 80
Layout.fillWidth: true
Box {

id: box
property bool toggle
x: toggle?20:root.width-width-20
anchors.verticalCenter: parent.verticalCenter
gradient: Gradient {

GradientStop { position: 0.0; color: "#2ed5fa" }
GradientStop { position: 1.0; color: "#2467ec" }

}
Behavior on x {

NumberAnimation {
id: animation
duration: 500

}
}

}
}

}
}

A you play with it, please observe the change of speed during an animation. Some animations feel more natural
for the object and some feel irritating.

Besides the duration and easing.type you are able to fine tune animations. For example the general
PropertyAnimation where most animation inherit from additionally supports an easing.amplitude,
easing.overshoot and easing.period property which allows you to fine-tune the behavior of partic-
ular easing curves. Not all easing curves support these parameters. Please consult the easing table from the
PropertyAnimation documentation to check if an easing parameter has influence on an easing curve.

Note: Choosing the right animation for the element in the user interface context is crucial for the outcome.
Remember the animation shall support the UI flow; not irritate the user.

Grouped Animations

Often animations will be more complex then just animating one property. You might want to run several anima-
tions at the same time or one after another or even execute a script between two animations. For this, the grouped
animation offer you a possibility. As the named suggests it’s possible to group animations. Grouping can be done
in two ways: parallel or sequential. You can use the SequentialAnimation or the ParallelAnimation
element, which act as animation containers for other animation elements. These grouped animations are anima-
tions themselves and can be used exactly as such.

All direct child animations of a parallel animation will run in parallel, when started. This allows you to animate
different properties at the same time.

// parallelanimation.qml
import QtQuick 2.5

BrightSquare {

5.1. Animations 63

http://doc.qt.io/qt-5//qml-qtquick-propertyanimation.html#easing-prop

Qt5 Cadaques, Release 2015-03

id: root
width: 600
height: 400
property int duration: 3000
property Item ufo: ufo

Image {
anchors.fill: parent
source: "assets/ufo_background.png"

}

ClickableImageV3 {
id: ufo
x: 20; y: root.height-height
text: 'ufo'
source: "assets/ufo.png"
onClicked: anim.restart()

}

ParallelAnimation {
id: anim
NumberAnimation {

target: ufo
properties: "y"
to: 20
duration: root.duration

}
NumberAnimation {

target: ufo
properties: "x"
to: 160
duration: root.duration

}
}

}

64 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

A sequential animation will first run the first child animation and then continue from there.

// sequentialanimation.qml
import QtQuick 2.5

BrightSquare {
id: root
width: 600
height: 400
property int duration: 3000

property Item ufo: ufo

Image {
anchors.fill: parent
source: "assets/ufo_background.png"

}

ClickableImageV3 {
id: ufo
x: 20; y: root.height-height
text: 'rocket'
source: "assets/ufo.png"
onClicked: anim.restart()

}

SequentialAnimation {
id: anim
NumberAnimation {

target: ufo
properties: "y"
to: 20
// 60% of time to travel up
duration: root.duration*0.6

}
NumberAnimation {

target: ufo
properties: "x"
to: 400
// 40% of time to travel sideways
duration: root.duration*0.4

}
}

}

Grouped animation can also be nested, for example a sequential animation can have two parallel animations as
child animations, and so on. We can visualize this with a soccer ball example. The idea is to throw a ball from left
to right an animate its behavior.

To understand the animation we need to dissect it into the integral transformations of the object. We need to
remember animation do animate property changes. Here are the different transformations:

• An x-translation from left-to-right (X1)

5.1. Animations 65

Qt5 Cadaques, Release 2015-03

• An y-translation from down to up (Y1) followed by a translation from up to down (Y2) with some bouncing

• A rotation over 360 over the whole animation duration (ROT1)

The whole duration of the animation should take three seconds.

We start with an empty item as root element of the width of 480 and height of 300.

import QtQuick 2.5

Item {
id: root
width: 480
height: 300
property int duration: 3000

...
}

We have defined our total animation duration as reference to better synchronize the animation parts.

The next step would be to add the background, which in our case are 2 rectangles with a green and blue gradients.

Rectangle {
id: sky
width: parent.width
height: 200
gradient: Gradient {

GradientStop { position: 0.0; color: "#0080FF" }
GradientStop { position: 1.0; color: "#66CCFF" }

}
}
Rectangle {

id: ground
anchors.top: sky.bottom
anchors.bottom: root.bottom

66 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

width: parent.width
gradient: Gradient {

GradientStop { position: 0.0; color: "#00FF00" }
GradientStop { position: 1.0; color: "#00803F" }

}
}

The upper blue rectangle takes 200 pixel of the height and the lower one is anchored to the top on the sky and to
the bottom on the root element.

Let’s bring the soccer ball onto the green. The ball is an image, stored under “assets/soccer_ball.png”. For the
beginning we would like to position it in the lower left corner, near the edge.

Image {
id: ball
x: 0; y: root.height-height
source: "assets/soccer_ball.png"

MouseArea {

5.1. Animations 67

Qt5 Cadaques, Release 2015-03

anchors.fill: parent
onClicked: {

ball.x = 0;
ball.y = root.height-ball.height;
ball.rotation = 0;
anim.restart()

}
}

}

The image has a mouse area attached to it. If the ball is clicked the position of the ball will reset and the animation
restarted.

Let’s start with an sequential animation for the two y translations first.

SequentialAnimation {
id: anim
NumberAnimation {

target: ball
properties: "y"
to: 20
duration: root.duration * 0.4

}
NumberAnimation {

target: ball
properties: "y"
to: 240
duration: root.duration * 0.6

}
}

This specifies that 40% of the total animation duration is the up animation and 60% the down animation. One
animation after another as a sequence. The transformations are animated on a linear path but there is no curve
currently. Curves will be added later using the easing curves, at the moment we’re concentrating on getting the
transformations animated.

Next, we need to add the x-translation. The x-translation shall run in parallel with the y-translation so we need to
encapsulate the sequence of y-translations into a parallel animation together with the x-translation.

68 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

ParallelAnimation {
id: anim
SequentialAnimation {

// ... our Y1, Y2 animation
}
NumberAnimation { // X1 animation

target: ball
properties: "x"
to: 400
duration: root.duration

}
}

At the end we would like the ball to be rotating. For this we need to add another animation to the parallel animation.
We choose the RotationAnimation as it’s specialized for rotation.

ParallelAnimation {
id: anim
SequentialAnimation {

// ... our Y1, Y2 animation
}
NumberAnimation { // X1 animation

// X1 animation
}
RotationAnimation {

target: ball
properties: "rotation"
to: 720
duration: root.duration

}
}

That’s the whole animation sequence. The one thing left is to provide the correct easing curves for the movements
of the ball. For the Y1 animation I use a Easing.OutCirc curve as this should look more like a circular
movement. Y2 is enhanced using an Easing.OutBounce as the ball should bounce and the bouncing should
happen at the end (try an Easing.InBounce and you see the bouncing will start right away). The X1 and ROT1
animation are left as is with a linear curve.

Here is the final animation code for your reference:

ParallelAnimation {
id: anim
SequentialAnimation {

NumberAnimation {
target: ball
properties: "y"
to: 20
duration: root.duration * 0.4
easing.type: Easing.OutCirc

}
NumberAnimation {

target: ball

5.1. Animations 69

Qt5 Cadaques, Release 2015-03

properties: "y"
to: root.height-ball.height
duration: root.duration * 0.6
easing.type: Easing.OutBounce

}
}
NumberAnimation {

target: ball
properties: "x"
to: root.width-ball.width
duration: root.duration

}
RotationAnimation {

target: ball
properties: "rotation"
to: 720
duration: root.duration

}
}

States and Transitions

Often parts of a user interface can be described in states. A state defines a set of property changes and can be
triggered by a certain condition. Additional these state switches can have a transition attached which defines how
these changes should be animated or any additional actions shall be applied. Actions can also be applied when a
state is entered.

States

You define states in QML with the State element, which needs to be bound to the states array of any item
element. A state is identified through a state name and consist, in its simplest form, of a series of property changes
on elements. The default state is defined by the initial properties of the element and is named "" (the empty
string).

Item {
id: root
states: [

State {
name: "go"
PropertyChanges { ... }

},
State {

name: "stop"
PropertyChanges { ... }

}
]

}

A state is changed by assigning a new state name to the state property of the element with the states defined.

Note: Another way to switch states is using the when property of the State element. The when property can
be set to an expression that evaluates to true when the state should be applied.

Item {
id: root
states: [

70 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

...
]

Button {
id: goButton
...
onClicked: root.state = "go"

}
}

For example, a traffic light might have two signaling lights. The upper one signaling stop with a red color and the
lower one signaling go with a green color. In this example both lights should not shine at the same time. Let’s
have a look at the state chart diagram.

When the system is switched on it goes automatically into the stop mode as default state. The stop state changes
the light1 to red and light2 to black (off). An external event can now trigger a state switch to the "go" state.
In the go state we change the color properties from light1 to black (off) and light2 to green to indicate the
passers may walk now.

To realize this scenario we start sketching our user interface for the 2 lights. For simplicity we use 2 rectangles
with the radius set to the half of the width (and the width is the same as the height, which means it’s a square).

Rectangle {
id: light1
x: 25; y: 15
width: 100; height: width
radius: width/2
color: root.black
border.color: Qt.lighter(color, 1.1)

}

Rectangle {
id: light2
x: 25; y: 135
width: 100; height: width
radius: width/2
color: root.black

5.2. States and Transitions 71

Qt5 Cadaques, Release 2015-03

border.color: Qt.lighter(color, 1.1)
}

As defined in the state chart we want to have two states one the "go" state and the other the "stop" state, where
each of them changes the traffic lights respective to red or green. We set the state property to stop to ensure
the initial state of our traffic light is the stop state.

Note: We could have achieved the same effect with only a "go" state and no explicit "stop" state by setting
the color of light1 to red and the color of light2 to black. The initial state "" defined by the initial property
values would then act as the "stop" state.

state: "stop"

states: [
State {

name: "stop"
PropertyChanges { target: light1; color: root.red }
PropertyChanges { target: light2; color: root.black }

},
State {

name: "go"
PropertyChanges { target: light1; color: root.black }
PropertyChanges { target: light2; color: root.green }

}
]

Using PropertyChanges { target: light2; color: "black" } is not really required in this
examples as the initial color of light2 is already black. In a state it’s only necessary to describe how the
properties shall change from their default state (and not from the previous state).

A state change is triggered using a mouse area which covers the whole traffic light and toggles between the go and
stop state when clicked.

MouseArea {
anchors.fill: parent
onClicked: parent.state = (parent.state == "stop"? "go" : "stop")

}

We are now able to successfully change the state of the traffic lamp. To make the UI more appealing and look
natural we should add some transitions with animation effects. A transition can be triggered by a state change.

Note: It’s possible to create a similar logic using scripting instead of QML states. Developers can easily fall into
the trap of writing more a JavaScript program than a QML program.

Transitions

A series of transitions can be added to every item. A transition is executed by a state change. You can define
on which state change a particular transition can be applied using the from: and to: properties. These two
properties act like a filter, when the filter is true the transition will be applied. You can also use the wild-cast “*”
which means “any state”. For example from:"*"; to:"*" means from any state to any other state and is the
default value for from and to, which means the transition is applied to every state switch.

For this example we would like to animate the color changes when switching state from “go” to “stop”. For
the other reversed state change (“stop” to “go”) we want to keep an immediate color change and don’t apply a
transition. We restrict the transition with the from and to properties to filter only the state change from “go” to
“stop”. Inside the transition we add two color animations for each light, which shall animate the property changes
defined in the state description.

72 Chapter 5. Fluid Elements

Qt5 Cadaques, Release 2015-03

5.2. States and Transitions 73

Qt5 Cadaques, Release 2015-03

transitions: [
Transition {

from: "stop"; to: "go"
// from: "*"; to: "*"

ColorAnimation { target: light1; properties: "color"; duration: 2000 }
ColorAnimation { target: light2; properties: "color"; duration: 2000 }

}
]

You can change the state though clicking the UI. The state is applied immediately and will also change the state
while a transition is running. So try to click the UI while the state is in transition from “stop” to “go”. You will
see the change will happen immediately.

You could play around with this UI by, for example, scaling the inactive light down to highlight the active light.
For this you would need to add another property change for scaling to the states and also handle the animation
for the scaling property in the transition. Another option would be to add an “attention” state where the lights are
blinking yellow. For this, you would need to add a sequential animation to the transition for one second going to
yellow (“to” property of the animation and one sec going to “black”). Maybe you would also want to change the
easing curve to make it more visually appealing.

Advanced Techniques

Todo

To be written

74 Chapter 5. Fluid Elements

CHAPTER 6

Model-View-Delegate

Section author: e8johan

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

In Qt Quick, data is separated from the presentation through a model-view separation. For each view, the visu-
alization of each data element is separated into a delegate. Qt Quick comes with a set of predefined models and
views. To utilize the system, one must understand these classes and know how to create appropriate delegates to
get the right look and feel.

Concept

One of the most important aspects when developing user interfaces, is to keep the representation of the data
separate from the visualization. For instance, a phonebook could be arranged as a vertical list of text entries or a
grid of pictures of the contacts. In both cases, the data is identical: the phonebook, but the visualization differs.
This division is commonly referred to as the model-view pattern. In this pattern the data is referred to as the
model, while the visualization is handled by the view.

In QML, the model and view are joined by the delegate. The responsibility are divided as follows. The model
provides the data. For each data item, there might be multiple values. In the example above, each phonebook
entry has a name, a picture and a number. The data is arranged in a view, in which each item is visualized using
a delegate. The task of the view is to arrange the delegates, while each delegate shows the values of each model
item to the user.

75

https://bitbucket.org/e8johan

Qt5 Cadaques, Release 2015-03

View

Model

Visualizes Model Delegate

Creates and Places

Visualizes Model Rows

Basic Models

The most basic way to separate the data from the presentation is to use the Repeater element. It is used to
instantiate an array of items, and is easy to combine with a positioner to populate a part of the user interface. A
repeater uses a model, which can be anything from the number of items to instantiate, to a fully blown model
gathering data from the Internet.

In its simplest form, the repeater can be used to instantiate a specified number of items. Each item will have
access to an attached property, the variable index, that can be used to tell the items apart. In the example below,
a repeater is used to create 10 instances of an item. The number of items are controlled using the model property.
For each item, the Rectangle containing a Text element found inside the Repeater item, is instantiated. As
you can tell, the text property is set to the index value, thus the items are numbered from zero to nine.

import QtQuick 2.5
import "../common"

Column {
spacing: 2

Repeater {
model: 10
BlueBox {

width: 120
height: 32
text: index

}
}

}

As nice as lists of numbered items are, it is sometimes interesting to display a more complex data set. By replacing
the integer model value with a JavaScript array, we can achieve that. The contents of the array can be of any
type, be it strings, integers or objects. In the example below, a list of strings is used. We can still access and use
the index variable, but we also have access to modelData containing the data for each element in the array.

76 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

6.2. Basic Models 77

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5
import "../common"

Column {
spacing: 2

Repeater {
model: ["Enterprise", "Columbia", "Challenger", "Discovery", "Endeavour",

→˓"Atlantis"]

BlueBox {
width: 100
height: 32
radius: 3

text: modelData + ' (' + index + ')'
}

}
}

Being able to expose the data of an array, you soon find yourself in a position where you need multiple pieces of
data per item in the array. This is where models enter the picture. One of the most trivial models, and one of the
most commonly used, is the ListModel. A list model is simply a collection of ListElement items. Inside
each list element, a number of properties can be bound to values. For instance, in the example below, a name and
a color is provided for each element.

The properties bound inside each element are attached to each instantiated item by the repeater. This means that
the variables name and surfaceColor are available from within the scope of each Rectangle and Text
item created by the repeater. This not only makes it easy to access the data, it also makes it easy to read the source
code. The surfaceColor is the color of the circle to the left of the name, not something obscure as data from
column i of row j.

import QtQuick 2.5
import "../common"

Column {
spacing: 2

Repeater {
model: ListModel {

78 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

ListElement { name: "Mercury"; surfaceColor: "gray" }
ListElement { name: "Venus"; surfaceColor: "yellow" }
ListElement { name: "Earth"; surfaceColor: "blue" }
ListElement { name: "Mars"; surfaceColor: "orange" }
ListElement { name: "Jupiter"; surfaceColor: "orange" }
ListElement { name: "Saturn"; surfaceColor: "yellow" }
ListElement { name: "Uranus"; surfaceColor: "lightBlue" }
ListElement { name: "Neptune"; surfaceColor: "lightBlue" }

}

BlueBox {
width: 120
height: 32

radius: 3
text: name

Box {
anchors.left: parent.left
anchors.verticalCenter: parent.verticalCenter
anchors.leftMargin: 4

width: 16
height: 16

radius: 8

color: surfaceColor
}

}
}

}

The contents of the repeater that is being instantiated for each item is actually what is bound to the default property,
delegate. This means that the code of example Example 01 is synonymous to the code shown below. Notice

6.2. Basic Models 79

Qt5 Cadaques, Release 2015-03

that the only difference is that the delegate property name is spelled out explicitly in the latter.

import QtQuick 2.5
import "../common"

Column {
spacing: 2

Repeater {
model: 10

delegate: BlueBox {
width: 100
height: 32
text: index

}
}

}

Dynamic Views

Repeaters work well for limited and static sets of data, but in the real world, models are commonly more complex
– and larger. Here, a smarter solution is needed. For this, Qt Quick provides the ListView and GridView
elements. These are both based on a Flickable area, so the user can move around in a larger data set. At
the same time, they limit the number of concurrently instantiated delegates. For a large model, that means fewer
elements in the scene at once.

The two elements are similar in their usage. Thus, we will begin with the ListView and then describe the
GridView with the former as the starting point of the comparison.

The ListView is similar to the Repeater element. It uses a model, instantiates a delegate and between
the delegates, there can be spacing. The listing below shows how a simple setup can look.

80 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5
import "../common"

Background {
width: 80
height: 300

ListView {
anchors.fill: parent
anchors.margins: 20

clip: true

model: 100

delegate: numberDelegate
spacing: 5

}

Component {
id: numberDelegate

GreenBox {
width: 40
height: 40
text: index

}
}

}

If the model contains more data than can fit onto the screen, the ListView only shows part of the list. However,
as a consequence of the default behavior of Qt Quick, the list view does not limit the screen area within which the
delegates are shown. This means that delegates may be visible outside the list view, and that the dynamic creation

6.3. Dynamic Views 81

Qt5 Cadaques, Release 2015-03

and destruction of delegates outside the list view is visible to the user. To prevent this, clipping must be activated
on the ListView element by setting the clip property to true. The illustration below shows the result of this,
compared to when the clip property is left as false.

To the user, the ListView is a scrollable area. It supports kinetic scrolling, which means that it can be flicked
to quickly move through the contents. By default, it also can be stretched beyond the end of contents, and then
bounces back, to signal to the user that the end has been reached.

The behavior at the end of the view is controlled using the boundsBehavior property. This is an enumerated
value and can be configured from the default behavior, Flickable.DragAndOvershootBounds, where the
view can be both dragged and flicked outside its boundaries, to Flickable.StopAtBounds, where the view
never will move outside its boundaries. The middle ground, Flickable.DragOverBounds lets the user drag
the view outside its boundaries, but flicks will stop at the boundary.

It is possible to limit the positions where a view is allowed to stop. This is controlled using the snapMode prop-
erty. The default behavior, ListView.NoSnap, lets the view stop at any position. By setting the snapMode
property to ListView.SnapToItem, the view will always align the top of an item with its top. Finally, the
ListView.SnapOneItem, the view will stop no more than one item from the first visible item when the mouse
button or touch was released. The last mode is very handy when flipping through pages.

Orientation

The list view provides a vertically scrolling list by default, but horizontal scrolling can be just as useful. The
direction of the list view is controlled through the orientation property. It can be set to either the default
value, ListView.Vertical, or to ListView.Horizontal. A horizontal list view is shown below.

import QtQuick 2.5
import "../common"

Background {
width: 480
height: 80

82 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

ListView {
anchors.fill: parent
anchors.margins: 20
spacing: 4
clip: true
model: 100
orientation: ListView.Horizontal
delegate: numberDelegate

}

Component {
id: numberDelegate

GreenBox {
width: 40
height: 40
text: index

}
}

}

As you can tell, the direction of the horizontal flows from the left to the right by default. This can be
controlled through the layoutDirection property, which can be set to either Qt.LeftToRight or
Qt.RightToLeft, depending on the flow direction.

6.3. Dynamic Views 83

Qt5 Cadaques, Release 2015-03

Keyboard Navigation and Highlighting

When using a ListView in a touch based setting, the view itself is enough. In a scenario with a keyboard, or
even just arrow keys to select an item, a mechanism to indicate the current item is needed. In QML, this is called
highlighting.

Views support a highlight delegate which is shown in the view together with the delegates. It can be considered an
additional delegate, only that it is only instantiated once, and is moved into the same position as the current item.

In the example below this is demonstrated. There are two properties involved for this to work. First, the focus
property is set to true. This gives the ListView the keyboard focus. Second, the highlight property is set
to point out the highlighting delegate to use. The highlight delegate is given the x, y and height of the current
item. If the width is not specified, the width of the current item is also used.

In the example, the ListView.view.width attached property is used for width. The attached properties
available to delegates are discussed further in the delegate section of this chapter, but it is good to know that the
same properties are available to highlight delegates as well.

import QtQuick 2.5
import "../common"

Background {
width: 240
height: 300

ListView {
id: view
anchors.fill: parent
anchors.margins: 20

clip: true

model: 100

delegate: numberDelegate
spacing: 5

highlight: highlightComponent
focus: true

}

Component {
id: highlightComponent

GreenBox {
width: ListView.view.width

}
}

Component {
id: numberDelegate

Item {
width: ListView.view.width
height: 40

Text {
anchors.centerIn: parent

font.pixelSize: 10

text: index
}

84 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

}
}

}

When using a highlight in conjunction with a ListView, a number of properties can be used to control its
behavior. The highlightRangeMode controls how the highlight is affected by what is shown in the view. The
default setting, ListView.NoHighlightRange means that the highlight and the visible range of items in the
view not are related at all.

The value ListView.StrictlyEnforceRange ensures that the highlight is always visible. If an action
attempts to move the highlight outside the visible part of the view, the current item will change accordingly, so
that the highlight remains visible.

The middle ground is the ListView.ApplyRange value. It attempts to keep the highlight visible, but does not
alter the current item to enforce this. Instead, the highlight is allowed to move out of view if necessary.

In the default configuration, the view is responsible for moving the highlight into position. The speed
of the movement and resizing can be controlled, either as a speed or as a duration. The proper-
ties involved are highlightMoveSpeed, highlightMoveDuration, highlightResizeSpeed and
highlightResizeDuration. By default, the speed is set to 400 pixels per second, and the duration is set to
-1, indicating that the speed and distance control the duration. If both a speed and a duration is set, the one that
results in the quickest animation is chosen.

To control the movement of the highlight more in detail, the highlightFollowCurrentItem property can
be set to false. This means that the view is no longer responsible for the movement of the highlight delegate.
Instead, the movement can be controlled through a Behavior or an animation.

In the example below, the y property of the highlight delegate is bound to the
ListView.view.currentItem.y attached property. This ensures that the highlight follows the cur-
rent item. However, as we do not let the view move the highlight, we can control how the element is moved. This
is done through the Behavior on y. In the example below, the movement is divided into three steps: fading
out, moving, before fading in. Notice how SequentialAnimation and PropertyAnimation elements
can be used in combination with the NumberAnimation to create a more complex movement.

6.3. Dynamic Views 85

Qt5 Cadaques, Release 2015-03

Component {
id: highlightComponent

Item {
width: ListView.view.width
height: ListView.view.currentItem.height

y: ListView.view.currentItem.y

Behavior on y {
SequentialAnimation {

PropertyAnimation { target: highlightRectangle; property:
→˓"opacity"; to: 0; duration: 200 }

NumberAnimation { duration: 1 }
PropertyAnimation { target: highlightRectangle; property:

→˓"opacity"; to: 1; duration: 200 }
}

}

GreenBox {
id: highlightRectangle
anchors.fill: parent

}
}

}

Header and Footer

At the end of the ListView contents, a header and a footer element can be inserted. These can be consid-
ered special delegates places at the beginning or end of the list. For a horizontal list, these will not appear at the
head or foot, but rather at then beginning or end, depending on the layoutDirection used.

The example below illustrates how an header and footer can be used to enhance the perception of the beginning
and end of a list. There are other uses for these special list elements. For instance, they can be used to keep buttons
to load more contents.

import QtQuick 2.5
import "../common"

Background {
width: 240
height: 300

ListView {
anchors.fill: parent
anchors.margins: 20

clip: true

model: 4

delegate: numberDelegate
spacing: 2

header: headerComponent
footer: footerComponent

}

Component {
id: headerComponent

86 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

YellowBox {
width: ListView.view.width
height: 20
text: 'Header'

}
}

Component {
id: footerComponent

YellowBox {
width: ListView.view.width
height: 20
text: 'Footer'

}
}

Component {
id: numberDelegate

GreenBox {
width: ListView.view.width
height: 40
text: 'Item #' + index

}
}

}

Note: Header and footer delegates do not respect the spacing property of a ListView, instead they are placed
directly adjacent to the next item delegate in the list. This means that any spacing must be a part of the header and
footer items.

6.3. Dynamic Views 87

Qt5 Cadaques, Release 2015-03

The GridView

Using a GridView is very similar to using a ListView. The only real difference is that the grid view places
the delegates in a two dimensional grid instead of in a linear list.

Compared to a list view, the grid view does not rely on spacing and the size of its delegates. Instead, it uses the
cellWidth and cellHeight properties to control the dimensions of the contents delegates. Each delegate
item is then places in the top left corner of each such cell.

import QtQuick 2.5
import "../common"

Background {
width: 220
height: 300

GridView {
id: view
anchors.fill: parent
anchors.margins: 20

clip: true

model: 100

cellWidth: 45
cellHeight: 45

delegate: numberDelegate
}

Component {
id: numberDelegate

88 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

GreenBox {
width: 40
height: 40
text: index

}
}

}

A GridView contains headers and footers, can use a highlight delegate and supports snap modes as well as
various bounds behaviors. It can also be orientated in different directions and orientations.

The orientation is controlled using the flow property. It can be set to either GridView.LeftToRight or
GridView.TopToBottom. The former value fills a grid from the left to the right, adding rows from the top to
the bottom. The view is scrollable in the vertical direction. The latter value adds items from the top to the bottom,
filling the view from left to right. The scrolling direction is horizontal in this case.

In addition to the flow property, the layoutDirection property can adapt the direction of the grid to left-to-
right or right-to-left languages, depending on the value used.

Delegate

When it comes to using models and views in a custom user interface, the delegate plays a huge role in creating
a look. As each item in a the model are visualized through a delegate, what is actually visible to the user are the
delegates.

Each delegate gets access to a number of attached properties, some from the data model, others from the view.
From the model, the properties convey the data for each item to the delegate. From the view, the properties convey
state information related to the delegate within the view.

The most commonly used properties attached from the view are ListView.isCurrentItem and
ListView.view. The first is a boolean indicating if the item is the current item, while the latter is a read-
only reference to the actual view. Through access to the view, it is possible to create general, reusable delegates
that adapt to the size and nature of the view in which they are contained. In the example below, the width of
each delegate is bound to the width of the view, while the background color of each delegate depends on the
attached ListView.isCurrentItem property.

import QtQuick 2.5

Rectangle {
width: 120
height: 300

gradient: Gradient {
GradientStop { position: 0.0; color: "#f6f6f6" }
GradientStop { position: 1.0; color: "#d7d7d7" }

}

ListView {
anchors.fill: parent
anchors.margins: 20

clip: true

model: 100

delegate: numberDelegate
spacing: 5

focus: true
}

6.4. Delegate 89

Qt5 Cadaques, Release 2015-03

Component {
id: numberDelegate

Rectangle {
width: ListView.view.width
height: 40

color: ListView.isCurrentItem?"#157efb":"#53d769"
border.color: Qt.lighter(color, 1.1)

Text {
anchors.centerIn: parent

font.pixelSize: 10

text: index
}

}
}

}

If each item in the model is associated with an action, for instance, clicking an item acts upon it, that functionality
is a part of each delegate. This divides the event management between the view, which handles the navigation
between items in the view, and the delegate which handles actions on a specific item.

The most basic way to do this is to create a MouseArea within each delegate and act on the onClicked signal.
This is demonstrated in the example in the next section of this chapter.

90 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

Animating Added and Removed Items

In some cases, the contents shown in a view changes over time. Items are added and removed as the underlaying
data model is altered. In these cases, it is often a good idea to employ visual ques to give the user a sense of
direction and to help the user understand what data is added or removed.

Conveniently enough, QML views attaches two signals, onAdd and onRemove, to each item delegate. By
connecting animations to these, it is easy to create the movement necessary to aid the user in identifying what is
taking place.

The example below demonstrates this through the use of a dynamically populated ListModel. At the bottom
of the screen, a button for adding new items is shown. When it is clicked, a new item is added to the model
using the append method. This triggers the creation of a new delegate in the view, and the emission of the
GridView.onAdd signal. The SequentialAnimation attached to the signal causes the item to zoom into
view by animating the scale property of the delegate.

When a delegate in the view is clicked, the item is removed from the model through a call to the remove method.
This causes the GridView.onRemove signal to be emitted, triggering another SequentialAnimation.
This time, however, the destruction of the delegate must be delayed until the animation has completed. To do
this, PropertyAction element are used to set the GridView.delayRemove property to true before the
animation, and false after. This ensures that the animation is allowed to complete before the delegate item is
removed.

import QtQuick 2.5

Rectangle {
width: 480
height: 300

gradient: Gradient {
GradientStop { position: 0.0; color: "#dbddde" }
GradientStop { position: 1.0; color: "#5fc9f8" }

}

ListModel {
id: theModel

ListElement { number: 0 }
ListElement { number: 1 }
ListElement { number: 2 }
ListElement { number: 3 }
ListElement { number: 4 }
ListElement { number: 5 }
ListElement { number: 6 }
ListElement { number: 7 }
ListElement { number: 8 }
ListElement { number: 9 }

}

Rectangle {
anchors.left: parent.left
anchors.right: parent.right
anchors.bottom: parent.bottom
anchors.margins: 20

height: 40

color: "#53d769"
border.color: Qt.lighter(color, 1.1)

Text {
anchors.centerIn: parent

6.4. Delegate 91

Qt5 Cadaques, Release 2015-03

text: "Add item!"
}

MouseArea {
anchors.fill: parent

onClicked: {
theModel.append({"number": ++parent.count});

}
}

property int count: 9
}

GridView {
anchors.fill: parent
anchors.margins: 20
anchors.bottomMargin: 80

clip: true

model: theModel

cellWidth: 45
cellHeight: 45

delegate: numberDelegate
}

Component {
id: numberDelegate

Rectangle {
id: wrapper

width: 40
height: 40

gradient: Gradient {
GradientStop { position: 0.0; color: "#f8306a" }
GradientStop { position: 1.0; color: "#fb5b40" }

}

Text {
anchors.centerIn: parent

font.pixelSize: 10

text: number
}

MouseArea {
anchors.fill: parent

onClicked: {
theModel.remove(index);

}
}

GridView.onRemove: SequentialAnimation {
PropertyAction { target: wrapper; property: "GridView.delayRemove";

→˓ value: true }
NumberAnimation { target: wrapper; property: "scale"; to: 0;

→˓duration: 250; easing.type: Easing.InOutQuad }

92 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

PropertyAction { target: wrapper; property: "GridView.delayRemove";
→˓ value: false }

}

GridView.onAdd: SequentialAnimation {
NumberAnimation { target: wrapper; property: "scale"; from: 0; to:

→˓1; duration: 250; easing.type: Easing.InOutQuad }
}

}
}

}

Shape-Shifting Delegates

A commonly used mechanism in lists is that the current item is expanded when activated. This can be used to
dynamically let the item expand to fill the screen to enter a new part of the user interface, or it can be used to
provide slightly more information for the current item in a given list.

In the example below, each item is expanded to the full extent of the ListView containing it when clicked. The
extra spaced is then used to add more information. The mechanism used to control this is a state, expanded that
each item delegate can enter, where the item is expanded. In that state, a number of properties are altered.

First of all, the height of the wrapper is set to the height of the ListView. The thumbnail image is then
enlarged and moved down to make it move from its small position into its larger position. In addition to this, the
two hidden items, the factsView and closeButton are shown by altering the opacity of the elements.
Finally, the ListView is setup.

Setting up the ListView involves setting the contentsY, that is the top of the visible part of the view, to the
y value of the delegate. The other change is to set interactive of the view to false. This prevents the view
from moving. The user can no longer scroll through the list or change the current item.

As the item first is clicked, it enters the expanded state, causing the item delegate to fill the ListView and the
contents to rearrange. When the close button is clicked, the state is cleared, causing the delegate to return to its
previous state and re-enabling the ListView.

import QtQuick 2.5

Item {
width: 300
height: 480

Rectangle {
anchors.fill: parent
gradient: Gradient {

GradientStop { position: 0.0; color: "#4a4a4a" }
GradientStop { position: 1.0; color: "#2b2b2b" }

}
}

ListView {
id: listView

anchors.fill: parent

delegate: detailsDelegate
model: planets

}

ListModel {
id: planets

6.4. Delegate 93

Qt5 Cadaques, Release 2015-03

ListElement { name: "Mercury"; imageSource: "images/mercury.jpeg"; facts:
→˓"Mercury is the smallest planet in the Solar System. It is the closest planet to
→˓the sun. It makes one trip around the Sun once every 87.969 days." }

ListElement { name: "Venus"; imageSource: "images/venus.jpeg"; facts:
→˓"Venus is the second planet from the Sun. It is a terrestrial planet because it
→˓has a solid, rocky surface. The other terrestrial planets are Mercury, Earth and
→˓Mars. Astronomers have known Venus for thousands of years." }

ListElement { name: "Earth"; imageSource: "images/earth.jpeg"; facts: "The
→˓Earth is the third planet from the Sun. It is one of the four terrestrial
→˓planets in our Solar System. This means most of its mass is solid. The other
→˓three are Mercury, Venus and Mars. The Earth is also called the Blue Planet,
→˓'Planet Earth', and 'Terra'." }

ListElement { name: "Mars"; imageSource: "images/mars.jpeg"; facts: "Mars
→˓is the fourth planet from the Sun in the Solar System. Mars is dry, rocky and
→˓cold. It is home to the largest volcano in the Solar System. Mars is named after
→˓the mythological Roman god of war because it is a red planet, which signifies
→˓the colour of blood." }

}

Component {
id: detailsDelegate

Item {
id: wrapper

width: listView.width
height: 30

Rectangle {
anchors.left: parent.left
anchors.right: parent.right
anchors.top: parent.top

height: 30

color: "#333"
border.color: Qt.lighter(color, 1.2)
Text {

anchors.left: parent.left
anchors.verticalCenter: parent.verticalCenter
anchors.leftMargin: 4

font.pixelSize: parent.height-4
color: '#fff'

text: name
}

}

Rectangle {
id: image

width: 26
height: 26

anchors.right: parent.right
anchors.top: parent.top
anchors.rightMargin: 2
anchors.topMargin: 2

color: "black"

94 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

Image {
anchors.fill: parent

fillMode: Image.PreserveAspectFit

source: imageSource
}

}

MouseArea {
anchors.fill: parent
onClicked: parent.state = "expanded"

}

Item {
id: factsView

anchors.top: image.bottom
anchors.left: parent.left
anchors.right: parent.right
anchors.bottom: parent.bottom

opacity: 0

Rectangle {
anchors.fill: parent

gradient: Gradient {
GradientStop { position: 0.0; color: "#fed958" }
GradientStop { position: 1.0; color: "#fecc2f" }

}
border.color: '#000000'
border.width: 2

Text {
anchors.fill: parent
anchors.margins: 5

clip: true
wrapMode: Text.WordWrap
color: '#1f1f21'

font.pixelSize: 12

text: facts
}

}
}

Rectangle {
id: closeButton

anchors.right: parent.right
anchors.top: parent.top
anchors.rightMargin: 2
anchors.topMargin: 2

width: 26
height: 26

color: "#157efb"
border.color: Qt.lighter(color, 1.1)

6.4. Delegate 95

Qt5 Cadaques, Release 2015-03

opacity: 0

MouseArea {
anchors.fill: parent
onClicked: wrapper.state = ""

}
}

states: [
State {

name: "expanded"

PropertyChanges { target: wrapper; height: listView.height }
PropertyChanges { target: image; width: listView.width; height:

→˓ listView.width; anchors.rightMargin: 0; anchors.topMargin: 30 }
PropertyChanges { target: factsView; opacity: 1 }
PropertyChanges { target: closeButton; opacity: 1 }
PropertyChanges { target: wrapper.ListView.view; contentY:

→˓wrapper.y; interactive: false }
}

]

transitions: [
Transition {

NumberAnimation {
duration: 200;
properties: "height,width,anchors.rightMargin,anchors.

→˓topMargin,opacity,contentY"
}

}
]

}
}

}

The techniques demonstrated here to expand the delegate to fill the entire view can be employed to make an item
delegate shift shape in a much smaller way. For instance, when browsing through a list of songs, the current item
could be made slightly larger, accommodating more information about that particular item.

Advanced Techniques

The PathView

The PathView element is the most powerful, but also the most complex, view provided in Qt Quick. It makes it
possible to create a view where the items are laid out along an arbitrary path. Along the same path, attributes such
as scale, opacity and more can be controlled in detail.

When using the PathView, you have to define a delegate and a path. In addition to this, the PathView itself
can be customized through a range of properties. The most common being pathItemCount, controlling the
number of visible items at once, and the highlight range control properties preferredHighlightBegin,
preferredHighlightEnd and highlightRangeMode, controlling where along the path the current item
is to be shown.

Before looking at the highlight range control properties in depth, we must look at the path property. The path
property expects a Path element defining the path that the delegates follows as the PathView is being scrolled.
The path is defined using the startX and startY properties in combinations with path elements such as
PathLine, PathQuad and PathCubic. These elements are joined together to form a two-dimensional path.

96 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

6.5. Advanced Techniques 97

Qt5 Cadaques, Release 2015-03

98 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

Todo

do we cover the line, quad and cubic through an illustration, or do we need a paragraph on them?

When the path has been defined, it is possible to further tune it using PathPercent and PathAttribute
elements. These are placed in between path elements and provides a more fine grained control over the path
and the delegates on it. The PathPercent controls how large a portion of the path that has been covered
between each element. This, in turn, controls the distribution of delegates along the path, as they are distributed
proportionally to the percentage progressed.

This is where the preferredHighlightBegin and preferredHighlightEnd properties of the
PathView enters the picture. They both expect real values in the range between zero and one. The end is
also expected to be more or equal to the beginning. Setting both these properties to, for instance, 0.5, the current
item will be displayed at the location fifty percent along the path.

In the Path, the PathAttribute elements are placed between elements, just as PathPercent elements.
They let you specify property values that are interpolated along the path. These properties are attached to the
delegates and can be used to control any conceivable property.

The example below demonstrates how the PathView element is used to create view of cards that the user can
flip through. It employs a number of tricks to do this. The path consists of three PathLine elements. Using
PathPercent elements, the central element is properly centered and provided enough space not to be cluttered
by other elements. Using PathAttribute elements, the rotation, size and z-value are controlled.

In addition to the path, the pathItemCount property of the PathView has been set. This controls how
densely populated the path will be. The preferredHighlightBegin and preferredHighlightEnd
the PathView.onPath is used to control the visibility of the delegates.

PathView {
anchors.fill: parent

delegate: flipCardDelegate

6.5. Advanced Techniques 99

Qt5 Cadaques, Release 2015-03

model: 100

path: Path {
startX: root.width/2
startY: 0

PathAttribute { name: "itemZ"; value: 0 }
PathAttribute { name: "itemAngle"; value: -90.0; }
PathAttribute { name: "itemScale"; value: 0.5; }
PathLine { x: root.width/2; y: root.height*0.4; }
PathPercent { value: 0.48; }
PathLine { x: root.width/2; y: root.height*0.5; }
PathAttribute { name: "itemAngle"; value: 0.0; }
PathAttribute { name: "itemScale"; value: 1.0; }
PathAttribute { name: "itemZ"; value: 100 }
PathLine { x: root.width/2; y: root.height*0.6; }
PathPercent { value: 0.52; }
PathLine { x: root.width/2; y: root.height; }
PathAttribute { name: "itemAngle"; value: 90.0; }
PathAttribute { name: "itemScale"; value: 0.5; }
PathAttribute { name: "itemZ"; value: 0 }

}

pathItemCount: 16

preferredHighlightBegin: 0.5
preferredHighlightEnd: 0.5

}

The delegate, shown below, utilizes the attached properties itemZ, itemAngle and itemScale from the
PathAttribute elements. It is worth noticing that the attached properties of the delegate only are available
from the wrapper. Thus, the rotX property is defined to be able to access the value from within the Rotation
element.

Another detail specific to PathView worth noticing is the usage of the attached PathView.onPath property.
It is common practice to bind the visibility to this, as this allows the PathView to keep invisible elements for
caching purposes. This can usually not be handled through clipping, as the item delegates of a PathView are
placed more freely than the item delegates of ListView or GridView views.

Component {
id: flipCardDelegate

BlueBox {
id: wrapper

width: 64
height: 64
antialiasing: true

gradient: Gradient {
GradientStop { position: 0.0; color: "#2ed5fa" }
GradientStop { position: 1.0; color: "#2467ec" }

}

visible: PathView.onPath

scale: PathView.itemScale
z: PathView.itemZ

property variant rotX: PathView.itemAngle
transform: Rotation {

100 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

axis { x: 1; y: 0; z: 0 }
angle: wrapper.rotX;
origin { x: 32; y: 32; }

}
text: index

}
}

When transforming images or other complex elements on in PathView, a performance optimization trick
that is common to use is to bind the smooth property of the Image element to the attached property
PathView.view.moving. This means that the images are less pretty while moving, but smoothly trans-
formed when stationary. There is no point spending processing power on smooth scaling when the view is in
motion, as the user will not be able to see this anyway.

A Model from XML

As XML is an ubiquitous data format, QML provides the XmlListModel element that exposes XML data as a
model. The element can fetch XML data locally or remotely and then processes the data using XPath expressions.

The example below demonstrates fetching images from an RSS flow. The source property refers to a remove
location over HTTP, and the data is automatically downloaded.

When the data has been downloaded, it is processed into model items and roles. The query property is an XPath
representing the base query for creating model items. In this example, the path is /rss/channel/item, so for
every item tag, inside a channel tag, inside an RSS tag, a model item is created.

6.5. Advanced Techniques 101

Qt5 Cadaques, Release 2015-03

For every model item, a number of roles are extracted. These are represented by XmlRole elements. Each
role is given a name, which the delegate can access through an attached property. The actual value of each such
property is determined through the XPath query for each role. For instance, the title property corresponds to
the title/string() query, returning the contents between the <title> and </title> tags.

The imageSource property is more interesting as it not only extracts a string from the XML, but also pro-
cesses it. In the stream provided, every item contains an image, represented by an <img src= tag. Using the
substring-after and substring-before XPath functions, the location of the image is extracted and
returned. Thus the imageSource property can be used directly as the source for an Image element.

import QtQuick 2.5
import QtQuick.XmlListModel 2.0
import "../common"

Background {
width: 300
height: 480

Component {
id: imageDelegate

Box {
width: listView.width
height: 220
color: '#333'

Column {
Text {

text: title
color: '#e0e0e0'

}
Image {

width: listView.width
height: 200
fillMode: Image.PreserveAspectCrop
source: imageSource

}
}

}
}

XmlListModel {
id: imageModel

source: "http://feeds.nationalgeographic.com/ng/photography/photo-of-the-
→˓day/"

query: "/rss/channel/item"

XmlRole { name: "title"; query: "title/string()" }
XmlRole { name: "imageSource"; query: "substring-before(substring-

→˓after(description/string(), 'img src=\"'), '\"')" }
}

ListView {
id: listView
anchors.fill: parent
model: imageModel
delegate: imageDelegate

}
}

102 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

Lists with Sections

Sometimes, the data in a list can be divided into sections. It can be as simple as dividing a list of contacts into
sections under each letter of the alphabet or music tracks under albums. Using a ListView it is possible to
divide a flat list into categories, providing more depth to the experience.

In order to use sections, the section.property and section.criteria must be setup. The
section.property defines which property to use to divide the contents into sections. Here, it is impor-
tant to know that the model must be sorted so that each section consists of continuous elements, otherwise, the
same property name might appear in multiple locations.

The section.criteria can be set to either ViewSection.FullString or
ViewSection.FirstCharacter. The first is the default value and can be used for models that have
clear sections, for example tracks of music albums. The latter takes the first character of a property and means
that any property can be used for this. The most common example being the last name of contacts in a phone
book.

When the sections have been defined, they can be accessed from each item using the attached properties
ListView.section, ListView.previousSection and ListView.nextSection. Using these
properties, it is possible to detect the first and last item of a section and act accordingly.

It is also possible to assign a section delegate component to the section.delegate property of a ListView.
This creates a section header delegate which is inserted before any items of a section. The delegate component
can access the name of the current section using the attached property section.

The example below demonstrates the section concept by showing a list of space men sectioned after their
nationality. The nation is used as the section.property. The section.delegate component,
sectionDelegate, shows a heading for each nation, displaying the name of the nation. In each section,
the names of the space men are shown using the spaceManDelegate component.

import QtQuick 2.5
import "../common"

Background {
width: 300
height: 290

ListView {
anchors.fill: parent
anchors.margins: 20

6.5. Advanced Techniques 103

Qt5 Cadaques, Release 2015-03

clip: true

model: spaceMen

delegate: spaceManDelegate

section.property: "nation"
section.delegate: sectionDelegate

}

Component {
id: spaceManDelegate

Item {
width: ListView.view.width
height: 20
Text {

anchors.left: parent.left
anchors.verticalCenter: parent.verticalCenter
anchors.leftMargin: 8
font.pixelSize: 12
text: name
color: '#1f1f1f'

}
}

}

Component {
id: sectionDelegate

BlueBox {
width: ListView.view.width
height: 20
text: section
fontColor: '#e0e0e0'

}
}

ListModel {
id: spaceMen

ListElement { name: "Abdul Ahad Mohmand"; nation: "Afganistan"; }
ListElement { name: "Marcos Pontes"; nation: "Brazil"; }
ListElement { name: "Alexandar Panayotov Alexandrov"; nation: "Bulgaria"; }
ListElement { name: "Georgi Ivanov"; nation: "Bulgaria"; }
ListElement { name: "Roberta Bondar"; nation: "Canada"; }
ListElement { name: "Marc Garneau"; nation: "Canada"; }
ListElement { name: "Chris Hadfield"; nation: "Canada"; }
ListElement { name: "Guy Laliberte"; nation: "Canada"; }
ListElement { name: "Steven MacLean"; nation: "Canada"; }
ListElement { name: "Julie Payette"; nation: "Canada"; }
ListElement { name: "Robert Thirsk"; nation: "Canada"; }
ListElement { name: "Bjarni Tryggvason"; nation: "Canada"; }
ListElement { name: "Dafydd Williams"; nation: "Canada"; }

}
}

104 Chapter 6. Model-View-Delegate

Qt5 Cadaques, Release 2015-03

Tuning Performance

The perceived performance of a view of a model depends very much on the time needed to prepare new delegates.
For instance, when scrolling downwards through a ListView, delegates are added just outside the view on the
bottom and are removed just as they leave sight over the top of the view. This becomes apparent if the clip
property is set to false. If the delegates takes too much time to initialize, it will become apparent to the user as
soon as the view is scrolled too quickly.

To work around this issue you can tune the margins, in pixels, on the sides of a scrolling view. This is done using
the cacheBuffer property. In the case described above, vertical scrolling, it will control how many pixels
above and below the ListView that will contain prepared delegates. Combining this with asynchronously loading
Image elements can, for instance, give the images time to load before they are brought into view.

Having more delegates sacrifices memory for a smoother experience and slightly more time to initialize each
delegate. This does not solve the problem of complex delegates. Each time a delegate is instantiated, its contents
is evaluated and compiled. This takes time, and if it takes too much time, it will lead to a poor scrolling experience.
Having many elements in a delegate will also degrade the scrolling performance. It simply costs cycles to move
many elements.

To remedy the two later issues, it is recommended to use Loader elements. These can be used to instantiate
additional elements when they are needed. For instance, an expanding delegate may use a Loader to postpone
the instantiation of its detailed view until it is needed. For the same reason, it is good to keep the amount of
JavaScript to a minimum in each delegate. It is better to let them call complex pieced of JavaScript that reside
outside each delegate. This reduces the time spent compiling JavaScript each time a delegate is created.

Summary

In this chapter, we have looked at models, views and delegates. For each data entry in a model, a view instantiates
a delegate visualizing the data. This separates the data from the presentation.

A model can be a single integer, where the index variable is provided to the delegate. If a JavaScript array is
used as model, the modelData variable represents the data of the current index of the array, while index holds
the index. For more complex cases, where multiple values needs to be provided by each data item, a ListModel
populated with ListElement items is a better solution.

For static models, a Repeater can be used as the view. It is easy to combine it with a positioner such as
Row, Column, Grid or Flow to build user interface parts. For dynamic or large data models, a view such as
ListView or GridView are more appropriate. These create delegate instances on the fly as they are needed,
reducing the number of elements live in the scene at once.

The delegates used in the views can be static items with properties bound to data from the model, or they can be
dynamic, with states depending on if they are in focus or not. Using the onAdd and onRemove signals of the
view, they can even be animated as they appear and disappear.

6.6. Summary 105

Qt5 Cadaques, Release 2015-03

106 Chapter 6. Model-View-Delegate

CHAPTER 7

Canvas Element

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Early on when QML was introduced in Qt4 there were some discussions about if Qt Quick needs an ellipse. The
problem with the ellipse is that others can argue other shapes need also be supported. So there is no ellipse in Qt
Quick only rectangular shapes. If you needed one in Qt4 you would need to use an image or write your own C++
ellipse element.

To allow scripted drawings Qt 5 introduces the canvas element. The canvas elements provides a resolution-
dependent bitmap canvas, which can be used for graphics, games or to paint other visual images on the fly using
JavaScript. The canvas element is based on the HTML5 canvas element.

The fundamental idea of the canvas element is to render paths using a context 2D object. The context 2D object,
contains the necessary graphics functions, whereas the canvas acts as the drawing canvas. The 2D context supports
strokes, fills, gradients, text and a different sets of path creation commands.

Let’s see an example of a simple path drawing:

107

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5

Canvas {
id: root
// canvas size
width: 200; height: 200
// handler to override for drawing
onPaint: {

// get context to draw with
var ctx = getContext("2d")
// setup the stroke
ctx.lineWidth = 4
ctx.strokeStyle = "blue"
// setup the fill
ctx.fillStyle = "steelblue"
// begin a new path to draw
ctx.beginPath()
// top-left start point
ctx.moveTo(50,50)
// upper line
ctx.lineTo(150,50)
// right line
ctx.lineTo(150,150)
// bottom line
ctx.lineTo(50,150)
// left line through path closing
ctx.closePath()
// fill using fill style
ctx.fill()
// stroke using line width and stroke style
ctx.stroke()

}
}

This produces a filled rectangle with a starring point at 50,50 and a size of 100 and a stroke used as a border
decoration.

The stroke width is set to 4 and uses a blue color define by strokeStyle. The final shape is setup to be filled
through the fillStyle to a “steelblue” color. Only by calling stroke or fill the actual path will be drawn
and they can be used independently from each other. A call to stroke or fill will draw the current path. It’s
not possible to store a path for later reuse only a drawing state can be stored and restored.

108 Chapter 7. Canvas Element

Qt5 Cadaques, Release 2015-03

In QML the Canvas element acts as a container for the drawing. The 2D context object provides the actual
drawing operation. The actual drawing needs to be done inside the onPaint event handler.

Canvas {
width: 200; height: 200
onPaint: {

var ctx = getContext("2d")
// setup your path
// fill or/and stroke

}
}

The canvas itself provides a typical two dimensional Cartesian coordinate system, where the top-left is the (0,0)
point. A higher y-value goes down and a hight x-value goes to the right.

A typical order of commands for this path based API is the following:

1. Setup stroke and/or fill

2. Create path

3. Stroke and/or fill

onPaint: {
var ctx = getContext("2d")

// setup the stroke
ctx.strokeStyle = "red"

// create a path
ctx.beginPath()
ctx.moveTo(50,50)
ctx.lineTo(150,50)

// stroke path
ctx.stroke()

}

This produces a horizontal stroked line from point P1(50,50) to point P2(150,50).

Note: Typically you always want to set a start point when you reset your path, so the first operation after
beginPath is often moveTo.

Convenient API

For operations on rectangles a convenience API is provided which draws directly and does need a stroke or fill
call.

// convenient.qml

7.1. Convenient API 109

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5

Canvas {
id: root
width: 120; height: 120
onPaint: {

var ctx = getContext("2d")
ctx.fillStyle = 'green'
ctx.strokeStyle = "blue"
ctx.lineWidth = 4

// draw a filles rectangle
ctx.fillRect(20, 20, 80, 80)
// cut our an inner rectangle
ctx.clearRect(30,30, 60, 60)
// stroke a border from top-left to
// inner center of the larger rectangle
ctx.strokeRect(20,20, 40, 40)

}
}

Note: The stroke area extends half of the line width on both sides of the path. A 4 px lineWidth will draw 2 px
outside the path and 2 px inside.

Gradients

Canvas can fill shapes with color but also with gradients or images.

onPaint: {
var ctx = getContext("2d")

var gradient = ctx.createLinearGradient(100,0,100,200)
gradient.addColorStop(0, "blue")
gradient.addColorStop(0.5, "lightsteelblue")
ctx.fillStyle = gradient
ctx.fillRect(50,50,100,100)

}

The gradient in this example is defined along the starting point (100,0) to the end point (100,200), which gives
a vertical line in the middle of our canvas. The gradient stops can be define as a color from 0.0 (gradient start
point) to 1.0 (gradient end point). Here we use a “blue” color at 0.0 (100,0) and a “lightsteelblue” color at the 0.5
(100,200) position. The gradient is defined much larger then the rectangle we want to draw, so the rectangle clips
gradient to it’s defined geometry.

110 Chapter 7. Canvas Element

Qt5 Cadaques, Release 2015-03

Note: The gradient is defined in canvas coordinates not in coordinates relative to the path to be painted. A canvas
does not have the concept of relative coordinates, as we are used to by now from QML.

Shadows

A path can be visually enhanced using shadows with the 2D context object. A shadow is an area around the path
with an offset, color and specified blurring. For this you need can specify a shadowColor, shadowOffsetX,
shadowOffsetY and a shadowBlur. All of this needs to be defined using the 2D context. The 2D context is
your only API to the drawing operations.

A shadow can also be used to create a glow effect around a path. In the next example we create a text “Canvas”
with a white glow around. All this on a dark background for better visibility.

First we draw the dark background:

// setup a dark background
ctx.strokeStyle = "#333"
ctx.fillRect(0,0,canvas.width,canvas.height);

then we define our shadow configuration, which will be used for the next path:

// setup a blue shadow
ctx.shadowColor = "#2ed5fa";
ctx.shadowOffsetX = 2;
ctx.shadowOffsetY = 2;
ctx.shadowBlur = 10;

Finally we draw our “Canvas” text using a large bold 80px font from the Ubuntu font family.

// render green text
ctx.font = 'bold 80px Ubuntu';
ctx.fillStyle = "#24d12e";
ctx.fillText("Canvas!",30,180);

7.3. Shadows 111

Qt5 Cadaques, Release 2015-03

Images

The QML canvas supports image drawing from several sources. To use an image inside the canvas the image
needs to be loaded first. We will use the Component.onCompleted handler to load the image in our example.

onPaint: {
var ctx = getContext("2d")

// draw an image
ctx.drawImage('assets/ball.png', 10, 10)

// store current context setup
ctx.save()
ctx.strokeStyle = '#ff2a68'
// create a triangle as clip region
ctx.beginPath()
ctx.moveTo(110,10)
ctx.lineTo(155,10)
ctx.lineTo(135,55)
ctx.closePath()
// translate coordinate system
ctx.clip() // create clip from the path
// draw image with clip applied
ctx.drawImage('assets/ball.png', 100, 10)
// draw stroke around path
ctx.stroke()
// restore previous context
ctx.restore()

}

Component.onCompleted: {
loadImage("assets/ball.png")

}

The left shows our ball image painted at the top-left position of 10x10. The right image shows the ball with a clip
path applied. Images and any other path can be clipped using another path. The clipping is applied by defining a
path and calling the clip() function. All following drawing operations will now be clipped by this path. The
clipping is disabled again by restoring the previous state or by setting the clip region to the whole canvas.

112 Chapter 7. Canvas Element

Qt5 Cadaques, Release 2015-03

Transformation

The canvas allows you to transform the coordinate system in several ways. This is very similar to the transforma-
tion offered by QML items. You have the possibility to scale, rotate, translate the coordinate system. In
difference to QML the transform origin is always the canvas origin. For example to scale a path around it’s center
you would need to translate the canvas origin to the center of the path. It is also possible to apply a more complex
transformation using the transform method.

// transform.qml

import QtQuick 2.5

Canvas {
id: root
width: 240; height: 120
onPaint: {

var ctx = getContext("2d")
ctx.strokeStyle = "blue"
ctx.lineWidth = 4

ctx.beginPath()
ctx.rect(-20, -20, 40, 40)
ctx.translate(120,60)
ctx.stroke()

// draw path now rotated
ctx.strokeStyle = "green"
ctx.rotate(Math.PI/4)
ctx.stroke()

}
}

7.5. Transformation 113

Qt5 Cadaques, Release 2015-03

Besides translate the canvas allows also to scale using scale(x,y) around x and y axis, to rotate using
rotate(angle), where the angle is given in radius (360 degree = 2*Math.PI) and to use a matrix trans-
formation using the setTransform(m11,m12,m21,m22,dx,dy).

Note: To reset any transformation you can call the resetTransform() function to set the transformation
matrix back to the identity matrix:

ctx.resetTransform()

Composition Modes

Composition allows you to draw a shape and blend it with the existing pixels. The canvas supports several com-
position modes using the globalCompositeOperation(mode) operation.

• source-over

• source-in

• source-out

• source-atop

onPaint: {
var ctx = getContext("2d")
ctx.globalCompositeOperation = "xor"
ctx.fillStyle = "#33a9ff"

for(var i=0; i<40; i++) {
ctx.beginPath()
ctx.arc(Math.random()*400, Math.random()*200, 20, 0, 2*Math.PI)
ctx.closePath()
ctx.fill()

}
}

This little examples iterates over a list of composite modes and generates a rectangle with a circle.

property var operation : [
'source-over', 'source-in', 'source-over',
'source-atop', 'destination-over', 'destination-in',
'destination-out', 'destination-atop', 'lighter',
'copy', 'xor', 'qt-clear', 'qt-destination',
'qt-multiply', 'qt-screen', 'qt-overlay', 'qt-darken',
'qt-lighten', 'qt-color-dodge', 'qt-color-burn',
'qt-hard-light', 'qt-soft-light', 'qt-difference',
'qt-exclusion'
]

onPaint: {
var ctx = getContext('2d')

for(var i=0; i<operation.length; i++) {
var dx = Math.floor(i%6)*100
var dy = Math.floor(i/6)*100
ctx.save()
ctx.fillStyle = '#33a9ff'
ctx.fillRect(10+dx,10+dy,60,60)
// TODO: does not work yet
ctx.globalCompositeOperation = root.operation[i]
ctx.fillStyle = '#ff33a9'

114 Chapter 7. Canvas Element

Qt5 Cadaques, Release 2015-03

ctx.globalAlpha = 0.75
ctx.beginPath()
ctx.arc(60+dx, 60+dy, 30, 0, 2*Math.PI)
ctx.closePath()
ctx.fill()
ctx.restore()

}
}

Pixel Buffers

When working with the canvas you are able to retrieve pixel data from the canvas to read or ma-
nipulate the pixels of your canvas. To read the image data use createImageData(sw,sh) or
getImageData(sx,sy,sw,sh). Both functions return an ImageData object with a width, height
and a data variable. The data variable contains a one-dimensional array of the pixel data retrieved in the
RGBA format, where each value varies in the range of 0 to 255. To set pixels on the canvas you can use the
putImageData(imagedata,,dx,dy) function.

Another way to retrieve the content of the canvas is to store the data into an image. This can be achieved with the
Canvas functions save(path) or toDataURL(mimeType), where the later function returns an image url,
which can be used to be loaded by an Image element.

import QtQuick 2.5

Rectangle {
width: 240; height: 120
Canvas {

id: canvas
x: 10; y: 10
width: 100; height: 100
property real hue: 0.0
onPaint: {

var ctx = getContext("2d")
var x = 10 + Math.random(80)*80
var y = 10 + Math.random(80)*80
hue += Math.random()*0.1
if(hue > 1.0) { hue -= 1 }
ctx.globalAlpha = 0.7
ctx.fillStyle = Qt.hsla(hue, 0.5, 0.5, 1.0)
ctx.beginPath()
ctx.moveTo(x+5,y)
ctx.arc(x,y, x/10, 0, 360)
ctx.closePath()
ctx.fill()

}
MouseArea {

anchors.fill: parent
onClicked: {

var url = canvas.toDataURL('image/png')
print('image url=', url)
image.source = url

}
}

}

Image {
id: image
x: 130; y: 10
width: 100; height: 100

}

7.7. Pixel Buffers 115

Qt5 Cadaques, Release 2015-03

Timer {
interval: 1000
running: true
triggeredOnStart: true
repeat: true
onTriggered: canvas.requestPaint()

}
}

In our little example we paint every second a small circle in the left canvas. When the use clicks on the mouse
area the canvas content is stored and a image url is retrieved. On the right side of our example the image is then
displayed.

Note: Retrieving image data seems not to work currently in the Qt 5 Alpha SDK.

Canvas Paint

In this example we would like to create a small paint application using the Canvas element.

For this we arrange four color squares on the top of our scene using a row positioner. A color square is a simple
rectangle filled with a mouse area to detect clicks.

Row {
id: colorTools
anchors {

horizontalCenter: parent.horizontalCenter

116 Chapter 7. Canvas Element

Qt5 Cadaques, Release 2015-03

top: parent.top
topMargin: 8

}
property variant activeSquare: red
property color paintColor: "#33B5E5"
spacing: 4
Repeater {

model: ["#33B5E5", "#99CC00", "#FFBB33", "#FF4444"]
ColorSquare {

id: red
color: modelData
active: parent.paintColor == color
onClicked: {

parent.paintColor = color
}

}
}

}

The colors are stored in an array and the paint color. When one the user clicks in one of the squares the color of
the square is assigned to the paintColor property of the row named colorTools.

To enable tracking of the mouse events on the canvas we have a MouseArea covering the canvas element and
hooked up the pressed and position changed handlers.

Canvas {
id: canvas
anchors {

left: parent.left
right: parent.right
top: colorTools.bottom
bottom: parent.bottom
margins: 8

}
property real lastX
property real lastY
property color color: colorTools.paintColor

onPaint: {
var ctx = getContext('2d')
ctx.lineWidth = 1.5
ctx.strokeStyle = canvas.color
ctx.beginPath()
ctx.moveTo(lastX, lastY)
lastX = area.mouseX
lastY = area.mouseY
ctx.lineTo(lastX, lastY)
ctx.stroke()

}
MouseArea {

id: area
anchors.fill: parent
onPressed: {

canvas.lastX = mouseX
canvas.lastY = mouseY

}
onPositionChanged: {

canvas.requestPaint()
}

}
}

A mouse press stores the initial mouse position into the lastX and lastY properties. Every change on the mouse

7.8. Canvas Paint 117

Qt5 Cadaques, Release 2015-03

position triggers a paint request on the canvas, which will result into calling the onPaint handler.

To finally draw the users stroke, in the onPaint handler we begin a new path and move to the last position. Then
we gather the new position from the mouse area and draw a line with the selected color to the new position. The
mouse position is stored as the new last position.

Porting from HTML5 Canvas

• https://developer.mozilla.org/en/Canvas_tutorial/Transformations

• http://en.wikipedia.org/wiki/Spirograph

It is fairly easy to port a HTML5 canvas graphics over to use the QML canvas. From the thousands of examples,
we picked one and tried it ourself.

Spiro Graph

We use a spiro graph example from the Mozilla project as our foundation. The original HTML5 was posted as
part of the canvas tutorial.

There where a few lines we needed to change:

• Qt Quick requires you to declare variable, so we needed to add some var declarations

for (var i=0;i<3;i++) {
...

}

• Adapted the draw method to receive the Context2D object

function draw(ctx) {
...

}

• we needed to adapt the translation for each spiro due to different sizes

ctx.translate(20+j*50,20+i*50);

Finally we inmpleted our onPaint handler. Inside we acquire a context and call our draw function.

onPaint: {
var ctx = getContext("2d");
draw(ctx);

}

The result is a ported spiro graph graphics running using the QML canvas

That’s all.

Glowing Lines

Here is another more complicated port from the W3C organization. The original pretty glowing lines has some
pretty nice aspects, which makes the porting more challenging.

<!DOCTYPE HTML>
<html lang="en">
<head>

<title>Pretty Glowing Lines</title>
</head>
<body>

<canvas width="800" height="450"></canvas>
<script>
var context = document.getElementsByTagName('canvas')[0].getContext('2d');

118 Chapter 7. Canvas Element

https://developer.mozilla.org/en/Canvas_tutorial/Transformations
http://en.wikipedia.org/wiki/Spirograph
http://en.wikipedia.org/wiki/Spirograph
https://developer.mozilla.org/en/Canvas_tutorial/Transformations
http://www.w3.org/TR/2dcontext/#examples

Qt5 Cadaques, Release 2015-03

7.9. Porting from HTML5 Canvas 119

Qt5 Cadaques, Release 2015-03

// initial start position
var lastX = context.canvas.width * Math.random();
var lastY = context.canvas.height * Math.random();
var hue = 0;

// closure function to draw
// a random bezier curve with random color with a glow effect
function line() {

context.save();

// scale with factor 0.9 around the center of canvas
context.translate(context.canvas.width/2, context.canvas.height/2);
context.scale(0.9, 0.9);
context.translate(-context.canvas.width/2, -context.canvas.height/2);

context.beginPath();
context.lineWidth = 5 + Math.random() * 10;

// our start position
context.moveTo(lastX, lastY);

// our new end position
lastX = context.canvas.width * Math.random();
lastY = context.canvas.height * Math.random();

// random bezier curve, which ends on lastX, lastY
context.bezierCurveTo(context.canvas.width * Math.random(),
context.canvas.height * Math.random(),
context.canvas.width * Math.random(),
context.canvas.height * Math.random(),
lastX, lastY);

// glow effect
hue = hue + 10 * Math.random();
context.strokeStyle = 'hsl(' + hue + ', 50%, 50%)';
context.shadowColor = 'white';
context.shadowBlur = 10;
// stroke the curve
context.stroke();
context.restore();

}

// call line function every 50msecs
setInterval(line, 50);

function blank() {
// makes the background 10% darker on each call
context.fillStyle = 'rgba(0,0,0,0.1)';
context.fillRect(0, 0, context.canvas.width, context.canvas.height);

}

// call blank function every 50msecs
setInterval(blank, 40);

</script>
</body>
</html>

In HTML5 the Context2D object can paint at any time on the canvas. In QML it can only point inside the
onPaint handler. The timer in usage with setInterval triggers in HTML5 the stroke of the line or to blank

120 Chapter 7. Canvas Element

Qt5 Cadaques, Release 2015-03

the screen. Due to the different handling in QML it’s not possible to just call these functions, because we need to
go through the onPaint handler. Also the color presentations needs to be adapted. Let’s go through the changes
on by one.

Everything starts with the canvas element. For simplicity we just use the Canvas element as the root element of
our QML file.

import QtQuick 2.5

Canvas {
id: canvas
width: 800; height: 450

...
}

To untangle the direct call of the functions through the setInterval, we replace the setInterval calls with
two timers which will request a repaint. A Timer is triggered after a short interval and allows us to execute some
code. As we can’t tell the paint function which operation we would like trigger we define for each operation a
bool flag request an operation and trigger then a repaint request.

Here is the code for the line operation. The blank operation is similar.

...
property bool requestLine: false

Timer {
id: lineTimer
interval: 40
repeat: true
triggeredOnStart: true
onTriggered: {

canvas.requestLine = true
canvas.requestPaint()

}
}

Component.onCompleted: {
lineTimer.start()

}
...

Now we have a an indication which (line or blank or even both) operation we need to perform during the onPaint
operation. As we enter the onPaint handler for each paint request we need to extract the initialization of the
variable into the canvas element.

Canvas {
...
property real hue: 0
property real lastX: width * Math.random();
property real lastY: height * Math.random();
...

}

Now our paint function should look like this:

onPaint: {
var context = getContext('2d')
if(requestLine) {

line(context)
requestLine = false

}
if(requestBlank) {

7.9. Porting from HTML5 Canvas 121

Qt5 Cadaques, Release 2015-03

blank(context)
requestBlank = false

}
}

The line function was extracted gor a canvas as argument.

function line(context) {
context.save();
context.translate(canvas.width/2, canvas.height/2);
context.scale(0.9, 0.9);
context.translate(-canvas.width/2, -canvas.height/2);
context.beginPath();
context.lineWidth = 5 + Math.random() * 10;
context.moveTo(lastX, lastY);
lastX = canvas.width * Math.random();
lastY = canvas.height * Math.random();
context.bezierCurveTo(canvas.width * Math.random(),

canvas.height * Math.random(),
canvas.width * Math.random(),
canvas.height * Math.random(),
lastX, lastY);

hue += Math.random()*0.1
if(hue > 1.0) {

hue -= 1
}
context.strokeStyle = Qt.hsla(hue, 0.5, 0.5, 1.0);
// context.shadowColor = 'white';
// context.shadowBlur = 10;
context.stroke();
context.restore();

}

The biggest change was the use of the QML Qt.rgba() and Qt.hsla() functions, which required to adapt
the values to the used 0.0 ... 1.0 range in QML.

Same applies to the blank function.

function blank(context) {
context.fillStyle = Qt.rgba(0,0,0,0.1)
context.fillRect(0, 0, canvas.width, canvas.height);

}

The final result will look similar to this.

See also:

• W3C HTML Canvas 2D Context Specification

• Mozilla Canvas Documentation

• HTML5 Canvas Tutorial

122 Chapter 7. Canvas Element

http://www.w3.org/TR/2dcontext/
https://developer.mozilla.org/en/HTML/Canvas
http://www.html5canvastutorials.com/

Qt5 Cadaques, Release 2015-03

7.9. Porting from HTML5 Canvas 123

Qt5 Cadaques, Release 2015-03

124 Chapter 7. Canvas Element

CHAPTER 8

Particle Simulations

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Particles are a computer graphics techniques to visualize certain graphics effects. Typical effects could be: falling
leaves, fire, explosions, meteors, clouds, etc.

It differs from other graphics rendering as particles rendering is based on fuzzy aspects. The outcome is not exactly
predictable on pixel-base. Parameters to the particle system describe the boundaries for the stochastic simulation.
The phenomena rendered with particles is often difficult to visualize with traditional rendering techniques. The
good thing is you can let QML elements interact with the particles systems. Also as parameters are expressed as
properties they can be animated using the traditional animation techniques.

Concept

In the heart of the particle simulation is the ParticleSystem which controls the shared time-line. A scene
can have several particles systems, each of them with an independent time-line. A particle is emitted using an
Emitter element and visualized with a ParticlePainter, which can be an image, QML item or a shader
item. An emitter provides also the direction for particle using a vector space. A particle ones emitted can’t be
manipulated by the emitter anymore. The particle module provides the Affector, which allows to manipulate
parameters of the particle after is has been emitted.

Particles in a system can share timed transitions using the ParticleGroup element. By default every particle
is on the empty (‘’) group.

• ParticleSystem - manages shared time-line between emitters

• Emitter - emits logical particles into the system

• ParticlePainter - particles are visualized by a particle painter

• Direction - vector space for emitted particles

• ParticleGroup - every particle is a member of a group

• Affector - manipulates particles after they have been emitted

Simple Simulation

Let us have a look at a very simple simulation to get started. Qt Quick makes it actually very simple to get started
with particle rendering. For this we need:

125

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

• A ParticleSystem which binds all elements to an simulation

• An Emitter which emits particles into the system

• A ParticlePainter derived element, which visualize the particles

import QtQuick 2.5
import QtQuick.Particles 2.0

Rectangle {
id: root
width: 480; height: 160
color: "#1f1f1f"

ParticleSystem {
id: particleSystem

}

Emitter {
id: emitter
anchors.centerIn: parent
width: 160; height: 80
system: particleSystem
emitRate: 10
lifeSpan: 1000
lifeSpanVariation: 500
size: 16
endSize: 32
Tracer { color: 'green' }

}

ImageParticle {
source: "assets/particle.png"
system: particleSystem

}
}

The outcome of the example will look like this:

We start with a a 80x80 pixel dark rectangle as our root element and background. Therein we declare a
ParticleSystem. This is always the first step as the system binds all other elements together. Typically the
next element is the Emitter, which defines the emitting area based on it’s bounding box and basic parameters
for the to be emitted particles. The emitter is bound to the system using the system property.

126 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

The emitter in this example emits 10 particles per second (emitRate: 10) over the area of the emitter with
each a life span of 1000 msecs (lifeSpan : 1000) and a life span variation between emitted particles of
500 msec (lifeSpanVariation: 500). A particle shall start with a size of 16px (size: 16) and at the
end of it’s life shall be 32px (endSize: 32).

The green bordered rectangle is a tracer element to show the geometry of the emitter. This visualizes that also while
the particles are emitted inside the emitters bounding box the rendering is not limited to the emitters bounding
box. The rendering position depends upon life-span and direction of the particle. This will get more clear when
we look into howto change the direction particles.

The emitter emits logical particles. A logical particle is visualized using a ParticlePainter in this example
we use an ImageParticle, which takes an image URL as the source property. The image particle has also
several other properties, which control the appearance of the average particle.

• emitRate: particles emitted per second (defaults to 10 per second)

• lifeSpan: milliseconds the particle should last for (defaults to 1000 msecs)

• size, endSize: size of the particles at the beginning and end of their life (defaults to 16 px)

Changing these properties can influence the result in a drastically way

Emitter {
id: emitter
anchors.centerIn: parent
width: 20; height: 20
system: particleSystem
emitRate: 40
lifeSpan: 2000
lifeSpanVariation: 500
size: 64
sizeVariation: 32
Tracer { color: 'green' }

}

Besides increasing the emit rate to 40 and the life span to 2 seconds the size now starts at 64 pixel and decreases
32 pixel at the end of a particle life span.

Increasing the endSize even more would lead to a more or less white background. Please note also when the
particles are only emitted in the area defined by the emitter the rendering is not constrained to it.

8.2. Simple Simulation 127

Qt5 Cadaques, Release 2015-03

Particle Parameters

We saw already how to change the behavior of the emitter to change our simulation. The particle painter used
allows us how the particle image is visualized for each particle.

Coming back to our example we update our ImageParticle. First we change our particle image to a small
sparking star image:

ImageParticle {
...
source: 'assets/star.png'

}

The particle shall be colorized in an gold color which varies from particle to particle by +/- 20%:

color: '#FFD700'
colorVariation: 0.2

To make the scene more alive we would like to rotate the particles. Each particle should start by 15 degrees
clockwise and varies between particles by +/-5 degrees. Additional the particle should continuously rotate with
the velocity of 45 degrees per second. The velocity shall also vary from particle to particle by +/- 15 degrees per
second:

rotation: 15
rotationVariation: 5
rotationVelocity: 45
rotationVelocityVariation: 15

Last but not least, we change the entry effect for the particle. This is the effect used when a particle comes to life.
In this case we want to use the scale effect:

entryEffect: ImageParticle.Scale

So now we have rotating golden stars appearing all over the place.

Here is the code we changed for the image particle in one block.

ImageParticle {
source: "assets/star.png"
system: particleSystem
color: '#FFD700'
colorVariation: 0.2
rotation: 0
rotationVariation: 45

128 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

rotationVelocity: 15
rotationVelocityVariation: 15
entryEffect: ImageParticle.Scale

}

Directed Particles

We have seen particles can rotate. But particles can also have a trajectory. The trajectory is specified as the velocity
or acceleration of particles defined by a stochastic direction also named a vector space.

There are different vector spaces available to define the velocity or acceleration of a particle:

• AngleDirection - a direction that varies in angle

• PointDirection - a direction that varies in x and y components

• TargetDirection - a direction towards the target point

Let’s try to move the particles over from the left to the right side of our scene by using the velocity directions.

We first try the AngleDirection. For this we need to specify the AngleDirection as an element of the
velocity property of our emitter:

velocity: AngleDirection { }

The angle where the particles are emitted is specified using the angle property. The angle is provided as value
between 0..360 degree and 0 points to the right. For our example we would like the particles to move to the right
so 0 is already the right direction. The particles shall spread by +/- 5 degree:

velocity: AngleDirection {
angle: 0
angleVariation: 15

}

Now we have set our direction, the next thing is to specify the velocity of the particle. This is defined by a
magnitude. The magnitude is defined in pixels per seconds. As we have ca. 640px to travel 100 seems to be a
good number. This would mean by an average life time of 6.4 secs a particle would cross the open space. To make
the traveling of the particles more interesting we vary the magnitude using the magnitudeVariation and set
this to the half of the magnitude:

velocity: AngleDirection {
...
magnitude: 100
magnitudeVariation: 50

}

Here is the full source code, with an average life time set to 6.4 seconds. We set the emitter width and height
to 1px. This means all particles are emitted at the same location and from thereon travel based on our given
trajectory.

8.4. Directed Particles 129

Qt5 Cadaques, Release 2015-03

Emitter {
id: emitter
anchors.left: parent.left
anchors.verticalCenter: parent.verticalCenter
width: 1; height: 1
system: particleSystem
lifeSpan: 6400
lifeSpanVariation: 400
size: 32
velocity: AngleDirection {

angle: 0
angleVariation: 15
magnitude: 100
magnitudeVariation: 50

}
}

So what is then the acceleration doing? The acceleration add a acceleration vector to each particle, which changes
the velocity vector over time. For example let’s make a trajectory like an arc of stars. For this we change our
velocity direction to -45 degree and remove the variations, to better visualize a coherent arc:

velocity: AngleDirection {
angle: -45
magnitude: 100

}

The acceleration direction shall be 90 degree (down direction) and we choose one fourth of the velocity magnitude
for this:

acceleration: AngleDirection {
angle: 90
magnitude: 25

}

The result is an arc going from the center left to the bottom right.

The values are discovered by try-and-error.

130 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

Here is the full code of our emitter.

Emitter {
id: emitter
anchors.left: parent.left
anchors.verticalCenter: parent.verticalCenter
width: 1; height: 1
system: particleSystem
emitRate: 10
lifeSpan: 6400
lifeSpanVariation: 400
size: 32
velocity: AngleDirection {

angle: -45
angleVariation: 0
magnitude: 100

}
acceleration: AngleDirection {

angle: 90
magnitude: 25

}
}

In the next example we would like that the particles again travel from left to right but this time we use the
PointDirection vector space.

A PointDirection derived it’s vector space from a x and y component. For example if you want the particles
travel in a 45 degree vector, you need to specify the same value for x and y.

In our case we want the particles travel from left-to-right building a 15 degree cone. For this we specify a
PointDirection as our velocity vector space:

velocity: PointDirection { }

To achieve a traveling velocity of 100 px per seconds we set our x component to 100. For the 15 degree (which is
1/6 th of 90 degree) we specify an y variation of 100/6:

velocity: PointDirection {
x: 100

8.4. Directed Particles 131

Qt5 Cadaques, Release 2015-03

y: 0
xVariation: 0
yVariation: 100/6

}

The result should be particles traveling in a 15 degree cone from right to left.

Now coming to our last contender, the TargetDirection. The target direction allows us to specify a target
point as an x and y coordinate relative to the emitter or an item. When an item is specified the center of the item
will become the target point. You can achieve the 15 degree cone by specifying a target variation of 1/6 th of the
x target:

velocity: TargetDirection {
targetX: 100
targetY: 0
targetVariation: 100/6
magnitude: 100

}

Note: Target direction are great to use when you have a specific x/y coordinate you want the stream of particles
emitted towards.

I spare you the image as it looks the same as the previous one, instead I have a quest for you.

In the following image the red and the green circle specify each a target item for the target direction of the velocity
respective the acceleration property. Each target direction has the same parameters. Here the question: Who is
responsible for velocity and who is for acceleration?

Particle Painters

Till now we have only used the image based particle painter to visualize particles. Qt comes also with other
particle painters:

• ItemParticle: delegate based particle painter

132 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

• CustomParticle: shader based particle painter

The ItemParticle can be used to emit QML items as particles. For this you need to specify your own delegate to
the particle.

ItemParticle {
id: particle
system: particleSystem
delegate: itemDelegate

}

Our delegate in this case is a random image (using Math.random()), visualized with a white border and a random
size.

Component {
id: itemDelegate
Item {

id: container
width: 32*Math.ceil(Math.random()*3); height: width
Image {

anchors.fill: parent
anchors.margins: 4
source: 'assets/'+images[Math.floor(Math.random()*9)]

}
}

}

We emit 4 images per second with a life span of 4 seconds each. The particles fade automatically in and out.

8.5. Particle Painters 133

Qt5 Cadaques, Release 2015-03

For more dynamic cases it is also possible to create an item on your own and let the particle take control of it with
take(item,priority). By this the particle simulation takes control of your particle and handles the item like
an ordinary particle. You can get back control of the item by using give(item). You can influence item particles
even more by halt their life progression using freeze(item) and resume their life using unfreeze(item).

Affecting Particles

Particles are emitted by the emitter. After a particle was emitted it can’t be changed anymore by the emitter. The
affectors allows you to influence particles after they have been emitted.

Each type of affector affects particles in a different way:

• Age - alter where the particle is in its life-cycle

• Attractor - attract particles towards a specific point

• Friction - slows down movement proportional to the particle’s current velocity

• Gravity - set’s an acceleration in an angle

• Turbulence - fluid like forces based on a noise image

• Wander - randomly vary the trajectory

• GroupGoal - change the state of a group of a particle

• SpriteGoal - change the state of a sprite particle

Age

Allows particle to age faster. the lifeLeft property specified how much life a particle should have left.

Age {
anchors.horizontalCenter: parent.horizontalCenter
width: 240; height: 120
system: particleSystem
advancePosition: true
lifeLeft: 1200
once: true
Tracer {}

}

In the example we shorten the life of the upper particles once, when they reach the age affector to 1200 msecs. As
we have set the advancePosition to true, we see the particle appearing again on a position when the particle has
1200 msecs left to life.

Attractor

The attractor attracts particles towards a specific point. The point is specified using pointX and pointY, which
is relative to the attractor geometry. The strength specifies the force of attraction. In our example we let particles
travel from left to right. The attractor is placed on the top and half of the particles travel through the attractor.
Affector only affect particles while they are in their bounding box. This split allows us to see the normal stream
and the affected stream simultaneous.

Attractor {
anchors.horizontalCenter: parent.horizontalCenter
width: 160; height: 120
system: particleSystem
pointX: 0
pointY: 0

134 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

strength: 1.0
Tracer {}

}

It’s easy to see that the upper half of the particles are affected by the attracted to the top. The attraction point is
set to top-left (0/0 point) of the attractor with a force of 1.0.

Friction

The friction affector slows down particles by a factor until a certain threshold is reached.

8.6. Affecting Particles 135

Qt5 Cadaques, Release 2015-03

Friction {
anchors.horizontalCenter: parent.horizontalCenter
width: 240; height: 120
system: particleSystem
factor : 0.8
threshold: 25
Tracer {}

}

In the upper friction area, the particles are slowed down by a factor of 0.8 until the particle reach 25 pixels per
seconds velocity. The threshold act’s like a filter. Particles traveling above the threshold velocity are slowed down
by the given factor.

Gravity

The gravity affector applies an acceleration In the example we stream the particles from the bottom to the top
using an angle direction. The right side is unaffected, where on the left a gravity affect is applied. The gravity is
angled to 90 degree (bottom-direction) with a magnitude of 50.

Gravity {
width: 240; height: 240
system: particleSystem
magnitude: 50
angle: 90
Tracer {}

}

Particles on the left side try to climb up, but the steady applied acceleration towards the bottom drags them into
the direction of the gravity.

Turbulence

The turbulence affector, applies a chaos map of force vectors to the particles. The chaos map is defined by a noise
image, which can be define with the noiseSource property. The strength defines how strong the vector will be
applied on the particle movements.

136 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

Turbulence {
anchors.horizontalCenter: parent.horizontalCenter
width: 240; height: 120
system: particleSystem
strength: 100
Tracer {}

}

In the upper area of the example, particles are influenced by the turbulence. Their movement is more erratic. The
amount of erratic deviation from the original path is defined by the strength.

8.6. Affecting Particles 137

Qt5 Cadaques, Release 2015-03

Wander

The wander manipulates the trajectory. With the property affectedParameter can be specified which parameter
(velocity, position or acceleration) is affector by the wander. The pace property specifies the maximum of attribute
changes per second. The yVariance and yVariance specifies the influence on x and y component of the particle
trajectory.

Wander {
anchors.horizontalCenter: parent.horizontalCenter
width: 240; height: 120
system: particleSystem
affectedParameter: Wander.Position
pace: 200
yVariance: 240
Tracer {}

}

In the top wander affector particles are shuffled around by random trajectory changes. In this case the position is
changed 200 times per second in the y-direction.

Particle Groups

At the beginning of this chapter we stated particles are in groups, which is by default the empty group (‘’). Using
the GroupGoal affector is it possible to let the particle change groups. To visualize this we would like to create
a small firework, where rockets start into space and explode in the air into a spectacular firework.

The example is divided into 2 parts. The 1st part called “Launch Time” is concerned to setup the scene and
introduce particle groups and the 2nd part called “Let there be fireworks” focuses on the group changes.

Let’s get start!

Launch Time

To get it going we create a typical dark scene:

138 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5
import QtQuick.Particles 2.0

Rectangle {
id: root
width: 480; height: 240
color: "#1F1F1F"
property bool tracer: false

}

The tracer property will be used to switch the tracer scene wide on and off. The next thing is to declare our particle
system:

ParticleSystem {
id: particleSystem

}

And our two image particles (one for the rocket and one for the exhaust smoke):

ImageParticle {
id: smokePainter
system: particleSystem
groups: ['smoke']
source: "assets/particle.png"
alpha: 0.3
entryEffect: ImageParticle.None

}

ImageParticle {
id: rocketPainter
system: particleSystem
groups: ['rocket']
source: "assets/rocket.png"
entryEffect: ImageParticle.None

}

You can see in on the images, they use the groups property to declare to which group the particle belong. It is
enough to just declare a name and an implicit group will be created by Qt Quick.

8.7. Particle Groups 139

Qt5 Cadaques, Release 2015-03

Now it’s time to emit some rockets into the air. For this we create an emitter on the bottom of our scene and set
the velocity into an upward direction. To simulate some gravity we set an acceleration downwards:

Emitter {
id: rocketEmitter
anchors.bottom: parent.bottom
width: parent.width; height: 40
system: particleSystem
group: 'rocket'
emitRate: 2
maximumEmitted: 4
lifeSpan: 4800
lifeSpanVariation: 400
size: 32
velocity: AngleDirection { angle: 270; magnitude: 150; magnitudeVariation: 10 }
acceleration: AngleDirection { angle: 90; magnitude: 50 }
Tracer { color: 'red'; visible: root.tracer }

}

The emitter is in the group ‘rocket’, the same as our rocket particle painter. Through the group name they are
bound together. The emitter emits particles into the group ‘rocket’ and the rocket particle painter will pain them.

For the exhaust we use a trail emitter, which follows our rocket. It declares an own group called ‘smoke’ and
follows the particles from the ‘rocket’ group:

TrailEmitter {
id: smokeEmitter
system: particleSystem
emitHeight: 1
emitWidth: 4
group: 'smoke'
follow: 'rocket'
emitRatePerParticle: 96
velocity: AngleDirection { angle: 90; magnitude: 100; angleVariation: 5 }
lifeSpan: 200
size: 16
sizeVariation: 4
endSize: 0

}

The smoke tis directed downwards to simulate the force the smoke comes out of the rocket. The emitHeight and
emitWidth specify the are around the particle followed from where the smoke particles shall be emitted. If this is
not specified than the are of the particle followed is taken but for this example we want to increase the effect that
the particles stem from a central point near the end of the rocket.

If you start the example now you will see the rockets fly up and some are even flying out of the scene. As this is
not really wanted we need to slow them down before they leave the screen. A friction affector can be used here to
slow the particles down to a minimum threshold:

Friction {
groups: ['rocket']
anchors.top: parent.top
width: parent.width; height: 80
system: particleSystem
threshold: 5
factor: 0.9

}

In the friction affector you also need to declare which groups of particles it shall affect. The friction will slow all
rockets, which are 80 pixel downwards from the top of the screen down by a factor of 0.9 (try 100 and you will
see they almost stop immediately) until they reach a velocity of 5 pixel per second. As the particles have still an
acceleration downwards applied the rockets will start sinking toward the ground after they reach the end of their
life-span.

140 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

As climbing up in the air is hard work and a very unstable situation we want to simulate some turbulences while
the ship is climbing:

Turbulence {
groups: ['rocket']
anchors.bottom: parent.bottom
width: parent.width; height: 160
system: particleSystem
strength: 25
Tracer { color: 'green'; visible: root.tracer }

}

Also the turbulence need to declare which groups it shall affect. The turbulence it self reaches from the bottom
160 pixel upwards (until it reaches the border of the friction). They also could overlap.

When you start the example now you will see the rockets are climbing up and then will be slowed down by the
friction and fall back to ground by the still applied downwards acceleration. The next thing would be to start the
firework.

Note: The image shows the scene with the tracers enabled to show the different areas. Rocket particles are
emitted in the red area and then affected by the turbulence in the blue area. Finally they are slowed down by the
friction affector in the green area and start falling again, because of the steady applied downwards acceleration.

Let there be fireworks

To be able to change the rocket into a beautiful firework we need add a ParticleGroup to encapsulate the
changes:

ParticleGroup {
name: 'explosion'
system: particleSystem

}

We change to the particle group using a GroupGoal affector. The group goal affector is placed near the vertical
center of the screen and it will affect the group ‘rocket’. With the groupGoal property we set the target group for

8.7. Particle Groups 141

Qt5 Cadaques, Release 2015-03

the change to ‘explosion’, our earlier defined particle group:

GroupGoal {
id: rocketChanger
anchors.top: parent.top
width: parent.width; height: 80
system: particleSystem
groups: ['rocket']
goalState: 'explosion'
jump: true
Tracer { color: 'blue'; visible: root.tracer }

}

The jump property states the change in groups shall be immediately and not after a certain duration.

Note: In the Qt 5 alpha release we could the duration for the group change not get working. Any ideas?

As the group of the rocket now changes to our ‘explosion’ particle group when the rocket particle enters the group
goal area we need to add the firework inside the particle group:

// inside particle group
TrailEmitter {

id: explosionEmitter
anchors.fill: parent
group: 'sparkle'
follow: 'rocket'
lifeSpan: 750
emitRatePerParticle: 200
size: 32
velocity: AngleDirection { angle: -90; angleVariation: 180; magnitude: 50 }

}

The explosion emits particles into the ‘sparkle’ group. We will define soon a particle painter for this group. The
trail emitter used follows the rocket particle and emits per rocket 200 particles. The particles are directed upwards
and vary by 180 degree.

As the particles are emitted into the ‘sparkle’ group, we also need to define a particle painter for the particles:

ImageParticle {
id: sparklePainter
system: particleSystem
groups: ['sparkle']
color: 'red'
colorVariation: 0.6
source: "assets/star.png"
alpha: 0.3

}

The sparkles of our firework shall be little red stars with a almost transparent color to allow some shine effects.

To make the firework more spectacular we also add a second trail emitter to our particle group, which will emit
particles in a narrow cone downwards:

// inside particle group
TrailEmitter {

id: explosion2Emitter
anchors.fill: parent
group: 'sparkle'
follow: 'rocket'
lifeSpan: 250
emitRatePerParticle: 100
size: 32

142 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

velocity: AngleDirection { angle: 90; angleVariation: 15; magnitude: 400 }
}

Otherwise the setup is similar to the other explosion trail emitter. That’s it.

Here is the final result.

Here is the full source code of the rocket firework.

import QtQuick 2.5
import QtQuick.Particles 2.0

Rectangle {
id: root
width: 480; height: 240
color: "#1F1F1F"
property bool tracer: false

ParticleSystem {
id: particleSystem

}

ImageParticle {
id: smokePainter
system: particleSystem
groups: ['smoke']
source: "assets/particle.png"
alpha: 0.3

}

ImageParticle {
id: rocketPainter
system: particleSystem
groups: ['rocket']
source: "assets/rocket.png"
entryEffect: ImageParticle.Fade

}

8.7. Particle Groups 143

Qt5 Cadaques, Release 2015-03

Emitter {
id: rocketEmitter
anchors.bottom: parent.bottom
width: parent.width; height: 40
system: particleSystem
group: 'rocket'
emitRate: 2
maximumEmitted: 8
lifeSpan: 4800
lifeSpanVariation: 400
size: 128
velocity: AngleDirection { angle: 270; magnitude: 150; magnitudeVariation:

→˓10 }
acceleration: AngleDirection { angle: 90; magnitude: 50 }
Tracer { color: 'red'; visible: root.tracer }

}

TrailEmitter {
id: smokeEmitter
system: particleSystem
group: 'smoke'
follow: 'rocket'
size: 16
sizeVariation: 8
emitRatePerParticle: 16
velocity: AngleDirection { angle: 90; magnitude: 100; angleVariation: 15 }
lifeSpan: 200
Tracer { color: 'blue'; visible: root.tracer }

}

Friction {
groups: ['rocket']
anchors.top: parent.top
width: parent.width; height: 80
system: particleSystem
threshold: 5
factor: 0.9

}

Turbulence {
groups: ['rocket']
anchors.bottom: parent.bottom
width: parent.width; height: 160
system: particleSystem
strength:25
Tracer { color: 'green'; visible: root.tracer }

}

ImageParticle {
id: sparklePainter
system: particleSystem
groups: ['sparkle']
color: 'red'
colorVariation: 0.6
source: "assets/star.png"
alpha: 0.3

}

GroupGoal {
id: rocketChanger
anchors.top: parent.top

144 Chapter 8. Particle Simulations

Qt5 Cadaques, Release 2015-03

width: parent.width; height: 80
system: particleSystem
groups: ['rocket']
goalState: 'explosion'
jump: true
Tracer { color: 'blue'; visible: root.tracer }

}

ParticleGroup {
name: 'explosion'
system: particleSystem

TrailEmitter {
id: explosionEmitter
anchors.fill: parent
group: 'sparkle'
follow: 'rocket'
lifeSpan: 750
emitRatePerParticle: 200
size: 32
velocity: AngleDirection { angle: -90; angleVariation: 180; magnitude:

→˓50 }
}

TrailEmitter {
id: explosion2Emitter
anchors.fill: parent
group: 'sparkle'
follow: 'rocket'
lifeSpan: 250
emitRatePerParticle: 100
size: 32
velocity: AngleDirection { angle: 90; angleVariation: 15; magnitude:

→˓400 }
}

}
}

Summary

Particles are a very powerful and fun way to express graphical phenomena like smoke. firework, random visual
elements. The extended API in Qt 5 is very powerful and we have just scratched on the surface. There are several
elements we haven’t yet played with like sprites, size tables or color tables. Also when the particles look very
playful they have a great potential when used wisely to create some eye catcher in any user interface. Using to
many particle effects inside an user interface will definitely lead to the impression towards a game. Creating games
is also the real strength of the particles.

8.8. Summary 145

Qt5 Cadaques, Release 2015-03

146 Chapter 8. Particle Simulations

CHAPTER 9

Shader Effects

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Objective

• http://doc.qt.io/qt-5/qml-qtquick-shadereffect.html

• http://www.opengl.org/registry/doc/GLSLangSpec.4.20.6.clean.pdf

• http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

• http://www.lighthouse3d.com/opengl/glsl/

• http://wiki.delphigl.com/index.php/Tutorial_glsl

• Qt5Doc qtquick-shaders

Give a short introduction to shader effects and then present the shader effects and their use.

Shaders allows us to create awesome rendering effects on top to the SceneGraph API leveraging directly the
power of OpenGL running on the GPU. Shaders are implemented using the ShaderEffect and ShaderEffectSource
elements. The shader algorithm itself is implemented using the OpenGL Shading Language.

Practically it means you mix QML code with shader code. On execution will the shader code be sent over to the
GPU and compiled and executed on the GPU. The shader QML elements allow you to interact through properties
with the OpenGL shader implementation.

Let’s first have a look what OpenGL shaders are.

OpenGL Shaders

OpenGL uses a rendering pipeline split into stages. A simplified OpenGL pipeline would contain a vertex and
fragment shader.

147

https://github.com/jryannel
http://doc.qt.io/qt-5/qml-qtquick-shadereffect.html
http://www.opengl.org/registry/doc/GLSLangSpec.4.20.6.clean.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.lighthouse3d.com/opengl/glsl/
http://wiki.delphigl.com/index.php/Tutorial_glsl
http://doc.qt.io/qt-5//qtquick-shaders.html

Qt5 Cadaques, Release 2015-03

The vertex shader receives vertex data and must assign it to the gl_Position at the end of the routine. In the next
stage the vertexes are clipped, transformed and rasterized for pixel output. From there the fragments (pixels)
arrive in the fragment shader and can further be manipulated and the resulting color needs to be assigned to
gl_FragColor. The vertex shader is called for each corner point of your polygon (vertex = point in 3D) and is
responsible of any 3D manipulation of these points. The fragment (fragment = pixel) shader is called for each
pixel and determines the color of that pixel.

Shader Elements

For programing shaders Qt Quick provides two elements. The ShaderEffectSource and the ShaderEffect. The
shader effect applies custom shaders and the shader effect source renders a QML item into a texture and renders it.
As shader effect can apply a custom shaders to it’s rectangular shape and can use sources for the shader operation.
A source can be an image, which is used as a texture or a shader effect source.

The default shader uses the source and renders it unmodified.

import QtQuick 2.5

Rectangle {
width: 480; height: 240
color: '#1e1e1e'

Row {
anchors.centerIn: parent
spacing: 20
Image {

id: sourceImage
width: 80; height: width
source: 'assets/tulips.jpg'

}
ShaderEffect {

id: effect
width: 80; height: width
property variant source: sourceImage

}
ShaderEffect {

id: effect2
width: 80; height: width
// the source where the effect shall be applied to
property variant source: sourceImage
// default vertex shader code
vertexShader: "

uniform highp mat4 qt_Matrix;
attribute highp vec4 qt_Vertex;
attribute highp vec2 qt_MultiTexCoord0;
varying highp vec2 qt_TexCoord0;
void main() {

qt_TexCoord0 = qt_MultiTexCoord0;
gl_Position = qt_Matrix * qt_Vertex;

}"
// default fragment shader code
fragmentShader: "

varying highp vec2 qt_TexCoord0;
uniform sampler2D source;
uniform lowp float qt_Opacity;
void main() {

gl_FragColor = texture2D(source, qt_TexCoord0) * qt_Opacity;
}"

}
}

}

148 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

In the above example we have a row of 3 images. The first is the real image. The second is rendered using the
default shader and the third is rendered using the default shader code for the fragment and vertex extracted from
the Qt 5 source code.

Note: If you don’t want to see the source image and only the effected image you can set the Image to invisible
(visible : false). The shader effects will still use the image data just the Image element will not be
rendered.

Let’s have a closer look at the shader code.

vertexShader: "
uniform highp mat4 qt_Matrix;
attribute highp vec4 qt_Vertex;
attribute highp vec2 qt_MultiTexCoord0;
varying highp vec2 qt_TexCoord0;
void main() {

qt_TexCoord0 = qt_MultiTexCoord0;
gl_Position = qt_Matrix * qt_Vertex;

}"

Both shaders are from the Qt side a string bound to the vertexShader and fragmentShader property. Every shader
code has to have a main() { ... } function, which is executed by the GPU. Variable starting with qt_ are provided
by default by Qt already.

Here a short rundown on the variables:

uniform value does not change during processing
attribute linkage to external data
varying shared value between shaders
highp high precision value
lowp low precision value
mat4 4x4 float matrix
vec2 2=dim float vector
sampler2D 2D texture
float floating scalar

9.2. Shader Elements 149

Qt5 Cadaques, Release 2015-03

A better reference is the OpenGL ES 2.0 API Quick Reference Card

Now we might be better able to understand what the variable are:

• qt_Matrix: model-view-projection matrix

• qt_Vertex: current vertex position

• qt_MultiTexCoord0: texture coordinate

• qt_TexCoord0: shared texture coordinate

So we have available the projection matrix, the current vertex and the texture coordinate. The texture coordinate
relates to the texture given as source. In the main() function we store the texture coordinate for later use in the
fragment shader. Every vertex shader need to assign the gl_Position this is done using here by multiplying the
project matrix with the vertex, our point in 3D.

The fragment shader receives our texture coordinate from the vertex shader and also the texture from our QML
source property. It shall be noted how easy it is to pass variable between the shader code and QML. Beautiful.
Additional we have the opacity of the shader effect available as qt_Opacity. Every fragment shader needs to assign
the gl_FragColor variable, this is done in the default shader code by picking the pixel from the source texture and
multiplying it with the opacity.

fragmentShader: "
varying highp vec2 qt_TexCoord0;
uniform sampler2D source;
uniform lowp float qt_Opacity;
void main() {

gl_FragColor = texture2D(source, qt_TexCoord0) * qt_Opacity;
}"

During the next examples we will playing around with some simple shader mechanics. First we concentrate on
the fragment shader and then we will come back to the vertex shader.

Fragment Shaders

The fragment shader is called for every pixel to be rendered. We will develop a small red lens, which will increase
the red color channel value of the image.

Setting up the scene

First we setup our scene, with a grid centered in the field and our source image be displayed.

import QtQuick 2.5

Rectangle {
width: 480; height: 240
color: '#1e1e1e'

Grid {
anchors.centerIn: parent
spacing: 20
rows: 2; columns: 4
Image {

id: sourceImage
width: 80; height: width
source: 'assets/tulips.jpg'

}
}

}

150 Chapter 9. Shader Effects

http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf

Qt5 Cadaques, Release 2015-03

A red shader

Next we will add a shader, which displays a red rectangle by providing for each fragment a red color value.

fragmentShader: "
uniform lowp float qt_Opacity;
void main() {

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0) * qt_Opacity;
}"

In the fragment shader we simply assign a vec4(1.0, 0.0, 0.0, 1.0) which represents a red color with full opacity
(alpha=1.0) to the gl_FragColor for each fragment.

9.3. Fragment Shaders 151

Qt5 Cadaques, Release 2015-03

A red shader with texture

Now we want to apply the red color to each texture pixel. For this we need the texture back in the vertex shader.
As we don’t do anything else in the vertex shader the default vertex shader is enough for us.

ShaderEffect {
id: effect2
width: 80; height: width
property variant source: sourceImage
visible: root.step>1
fragmentShader: "

varying highp vec2 qt_TexCoord0;
uniform sampler2D source;
uniform lowp float qt_Opacity;
void main() {

gl_FragColor = texture2D(source, qt_TexCoord0) * vec4(1.0, 0.0,
→˓ 0.0, 1.0) * qt_Opacity;

}"
}

The full shader contains now back our image source as variant property and we have left out the vertex shader,
which if not specified is the default vertex shader.

In the fragment shader we pick the texture fragment texture2D(source, qt_TexCoord0) and apply the red color to
it.

The red channel property

It’s not really nice to hard code the red channel value, so we would like to control the value from the QML side.
For this we add a redChannel property to our shader effect and also declare a uniform lowp float redChannel inside
our fragment shader. That’s all to make a value from the shader code available to the QML side. Very simple.

ShaderEffect {
id: effect3
width: 80; height: width
property variant source: sourceImage

152 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

property real redChannel: 0.3
visible: root.step>2
fragmentShader: "

varying highp vec2 qt_TexCoord0;
uniform sampler2D source;
uniform lowp float qt_Opacity;
uniform lowp float redChannel;
void main() {

gl_FragColor = texture2D(source, qt_TexCoord0) *
→˓vec4(redChannel, 1.0, 1.0, 1.0) * qt_Opacity;

}"
}

To make the lens really a lens, we change the vec4 color to be vec4(redChannel, 1.0, 1.0, 1.0) so that the other
colors are multiplied by 1.0 and only the red portion is multiplied by our redChannel variable.

The red channel animated

As the redChannel property is just a normal property it can also be animated as all properties in QML. So we can
use QML properties to animate values on the GPU to influence our shaders. How cool is that!

ShaderEffect {
id: effect4
width: 80; height: width
property variant source: sourceImage
property real redChannel: 0.3
visible: root.step>3
NumberAnimation on redChannel {

from: 0.0; to: 1.0; loops: Animation.Infinite; duration: 4000
}

fragmentShader: "
varying highp vec2 qt_TexCoord0;
uniform sampler2D source;
uniform lowp float qt_Opacity;
uniform lowp float redChannel;

9.3. Fragment Shaders 153

Qt5 Cadaques, Release 2015-03

void main() {
gl_FragColor = texture2D(source, qt_TexCoord0) *

→˓vec4(redChannel, 1.0, 1.0, 1.0) * qt_Opacity;
}"

}

Here the final result.

The shader effect on the 2nd row is animated from 0.0 to 1.0 with a duration of 4 seconds. So the image goes from
no red information (0.0 red) over to a normal image (1.0 red).

Wave Effect

In this more complex example we will create a wave effect with the fragment shader. The wave form is based on
the sinus curve and it influences the texture coordinates used for the color.

import QtQuick 2.5

Rectangle {
width: 480; height: 240
color: '#1e1e1e'

Row {
anchors.centerIn: parent
spacing: 20
Image {

id: sourceImage
width: 160; height: width
source: "assets/coastline.jpg"

}
ShaderEffect {

width: 160; height: width
property variant source: sourceImage
property real frequency: 8
property real amplitude: 0.1
property real time: 0.0

154 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

NumberAnimation on time {
from: 0; to: Math.PI*2; duration: 1000; loops: Animation.Infinite

}

fragmentShader: "
varying highp vec2 qt_TexCoord0;
uniform sampler2D source;
uniform lowp float qt_Opacity;
uniform highp float frequency;
uniform highp float amplitude;
uniform highp float time;
void main() {

highp vec2 pulse = sin(time - frequency * qt_TexCoord0);
highp vec2 coord = qt_TexCoord0 + amplitude * vec2(pulse.x, -

→˓pulse.x);
gl_FragColor = texture2D(source, coord) * qt_Opacity;

}"
}

}
}

The wave calculation is based on a pulse and the texture coordinate manipulation. The pulse equation gives us a
sine wave depending on the current time and the used texture coordinate:

highp vec2 pulse = sin(time - frequency * qt_TexCoord0);

Without the time factor we would just have a distortion but not a traveling distortion, like waves are.

For the color we use the color at a different texture coordinate:

highp vec2 coord = qt_TexCoord0 + amplitude * vec2(pulse.x, -pulse.x);

The texture coordinate is influences by our pulse x-value. The result of this is a moving wave.

Also if we haven’t moved pixels in this fragment shader the effect would look at first like a job for a vertex shader.

9.4. Wave Effect 155

Qt5 Cadaques, Release 2015-03

Vertex Shader

The vertex shader can be used to manipulated the vertexes provided by the shader effect. In normal cases the
shader effect has 4 vertexes (top-left, top-right, bottom-left and bottom-right). Each vertex reported is from type
vec4. To visualize the vertex shader we will program a genie effect. This effect is often used to let a rectangular
window area vanish into one point.

Setting up the scene

First we will setup our scene again.

import QtQuick 2.5

Rectangle {
width: 480; height: 240
color: '#1e1e1e'

Image {
id: sourceImage
width: 160; height: width
source: "assets/lighthouse.jpg"
visible: false

}
Rectangle {

width: 160; height: width
anchors.centerIn: parent
color: '#333333'

}
ShaderEffect {

id: genieEffect
width: 160; height: width
anchors.centerIn: parent
property variant source: sourceImage
property bool minimized: false
MouseArea {

anchors.fill: parent

156 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

onClicked: genieEffect.minimized = !genieEffect.minimized
}

}
}

This provides as a scene with a dark background and a shader effect using an image as the source texture. The
original image is not visible on the image produced by our genie effect. Additional we added a dark rectangle on
the same geometry as the shader effect so we can better detect where we need to click to revert the effect.

The effect is triggered by clicking on the image, this is defined by the mouse area covering the effect. In the
onClicked handler we toggle the custom boolean property minimized. We will use this property later to toggle the
effect.

Minimize and normalize

After we have setup the scene, we define a property of type real called minimize, the property will contain the
current value of our minimization. The value will vary from 0.0 to 1.0 and is controlled by a sequential animation.

property real minimize: 0.0

SequentialAnimation on minimize {
id: animMinimize
running: genieEffect.minimized
PauseAnimation { duration: 300 }
NumberAnimation { to: 1; duration: 700; easing.type: Easing.InOutSine }
PauseAnimation { duration: 1000 }

}

SequentialAnimation on minimize {
id: animNormalize
running: !genieEffect.minimized
NumberAnimation { to: 0; duration: 700; easing.type: Easing.InOutSine }
PauseAnimation { duration: 1300 }

}

The animation is triggered by the togling of the minimized property. Now that we have setup all our surroundings
we finally can look at our vertex shader.

9.5. Vertex Shader 157

Qt5 Cadaques, Release 2015-03

vertexShader: "
uniform highp mat4 qt_Matrix;
attribute highp vec4 qt_Vertex;
attribute highp vec2 qt_MultiTexCoord0;
varying highp vec2 qt_TexCoord0;
uniform highp float minimize;
uniform highp float width;
uniform highp float height;
void main() {

qt_TexCoord0 = qt_MultiTexCoord0;
highp vec4 pos = qt_Vertex;
pos.y = mix(qt_Vertex.y, height, minimize);
pos.x = mix(qt_Vertex.x, width, minimize);
gl_Position = qt_Matrix * pos;

}"

The vertex shader is called for each vertex so four times, in our case. The default qt defined parameters are
provided, like qt_Matrix, qt_Vertex, qt_MultiTexCoord0, qt_TexCoord0. We have discussed the variable already
earlier. Additional we link the minimize, width and height variables from our shader effect into our vertex shader
code. In the main function we store the current texture coordinate in our qt_TexCoord0 to make it available to the
fragment shader. Now we copy the current position and modify the x and y position of the vertex:

highp vec4 pos = qt_Vertex;
pos.y = mix(qt_Vertex.y, height, minimize);
pos.x = mix(qt_Vertex.x, width, minimize);

The mix(...) function provides a linear interpolation between the first 2 parameters on the point (0.0-1.0) provided
by the 3rd parameter. So in our case we interpolate for y between the current y position and the hight based on the
current minimize value, similar for x. Bear in mind the minimize value is animated by our sequential animation
and travels from 0.0 to 1.0 (or vice versa).

The resulting effect is not really the genie effect but is already a great step towards it.

Todo

better explanation, maybe draw the 4 vertexes and their interpolation

158 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

Primitive Bending

So minimized the x and y components of our vertexes. Now we would like to slightly modify the x manipulation
and make it depending of the current y value. The needed changes are pretty small. The y-position is calculated
as before. The interpolation of the x-position depends now on the vertexes y-position:

highp float t = pos.y / height;
pos.x = mix(qt_Vertex.x, width, t * minimize);

This results into an x-position tending towards the width when the y-position is larger. In other words the upper 2
vertexes are not affect ed at all as they have an y-position of 0 and the lower two vertexes x-positions both bend
towards the width, so they bend towards the same x-position.

import QtQuick 2.5

Rectangle {
width: 480; height: 240
color: '#1e1e1e'

Image {
id: sourceImage
width: 160; height: width
source: "assets/lighthouse.jpg"
visible: false

}
Rectangle {

width: 160; height: width
anchors.centerIn: parent
color: '#333333'

}
ShaderEffect {

id: genieEffect
width: 160; height: width
anchors.centerIn: parent
property variant source: sourceImage
property real minimize: 0.0
property bool minimized: false

9.5. Vertex Shader 159

Qt5 Cadaques, Release 2015-03

SequentialAnimation on minimize {
id: animMinimize
running: genieEffect.minimized
PauseAnimation { duration: 300 }
NumberAnimation { to: 1; duration: 700; easing.type: Easing.InOutSine }
PauseAnimation { duration: 1000 }

}

SequentialAnimation on minimize {
id: animNormalize
running: !genieEffect.minimized
NumberAnimation { to: 0; duration: 700; easing.type: Easing.InOutSine }
PauseAnimation { duration: 1300 }

}

vertexShader: "
uniform highp mat4 qt_Matrix;
uniform highp float minimize;
uniform highp float height;
uniform highp float width;
attribute highp vec4 qt_Vertex;
attribute highp vec2 qt_MultiTexCoord0;
varying highp vec2 qt_TexCoord0;
void main() {

qt_TexCoord0 = qt_MultiTexCoord0;
// M1>>
highp vec4 pos = qt_Vertex;
pos.y = mix(qt_Vertex.y, height, minimize);
highp float t = pos.y / height;
pos.x = mix(qt_Vertex.x, width, t * minimize);
gl_Position = qt_Matrix * pos;

Better Bending

As the bending is not really satisfying currently we will add several parts to improve the situation. First we
enhance our animation to support an own bending property. This is necessary as the bending should happen
immediately and the y-minimization should be delayed shortly. Both animation have in the sum the same duration
(300+700+1000 and 700+1300).

property real bend: 0.0
property bool minimized: false

// change to parallel animation
ParallelAnimation {

id: animMinimize
running: genieEffect.minimized
SequentialAnimation {

PauseAnimation { duration: 300 }
NumberAnimation {

target: genieEffect; property: 'minimize';
to: 1; duration: 700;
easing.type: Easing.InOutSine

}
PauseAnimation { duration: 1000 }

}
// adding bend animation
SequentialAnimation {

160 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

NumberAnimation {
target: genieEffect; property: 'bend'
to: 1; duration: 700;
easing.type: Easing.InOutSine }

PauseAnimation { duration: 1300 }
}

}

Additional to make the bending a smooth curve the y-effect on the x-position is not modified by a curved function
from 0..1 and the pos.x depends now on the new bend property animation:

highp float t = pos.y / height;
t = (3.0 - 2.0 * t) * t * t;
pos.x = mix(qt_Vertex.x, width, t * bend);

The curve starts smooth at the 0.0 value, grows then and stops smoothly towards the 1.0 value. Here is a plot of
the function in the specified range. For us only the range from 0..1 is from interest.

The most visual change is by increasing our amount of vertex points. The vertex points used can be increased by
using a mesh:

mesh: GridMesh { resolution: Qt.size(16, 16) }

The shader effect now has an equality distributed grid of 16x16 vertexes instead of the 2x2 vertexes used before.
This makes the interpolation between the vertexes look much smoother.

You can see also the influence of the curve being used, as the bending smoothes at the end nicely. This is where
the bending has the strongest effect.

Choosing Sides

As a final enhancement we want to be able to switch sides. The side is towards which point the genie effect
vanishes. Till now it vanishes always towards the width. By adding a side property we are able to modify the point
between 0 and width.

ShaderEffect {
...
property real side: 0.5

vertexShader: "
...
uniform highp float side;

9.5. Vertex Shader 161

Qt5 Cadaques, Release 2015-03

...
pos.x = mix(qt_Vertex.x, side * width, t * bend);

"
}

Packaging

The last thing to-do is package our effect nicely. For this we extract our genie effect code into an own component
called GenieEffect. It has the shader effect as the root element. We removed the mouse area as this should not be
inside the component as the triggering of the effect can be toggled by the minimized property.

162 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5

ShaderEffect {
id: genieEffect
width: 160; height: width
anchors.centerIn: parent
property variant source
mesh: GridMesh { resolution: Qt.size(10, 10) }
property real minimize: 0.0
property real bend: 0.0
property bool minimized: false
property real side: 1.0

ParallelAnimation {
id: animMinimize
running: genieEffect.minimized
SequentialAnimation {

PauseAnimation { duration: 300 }
NumberAnimation {

target: genieEffect; property: 'minimize';
to: 1; duration: 700;
easing.type: Easing.InOutSine

}
PauseAnimation { duration: 1000 }

}
SequentialAnimation {

NumberAnimation {
target: genieEffect; property: 'bend'
to: 1; duration: 700;
easing.type: Easing.InOutSine }

PauseAnimation { duration: 1300 }
}

}

ParallelAnimation {
id: animNormalize
running: !genieEffect.minimized
SequentialAnimation {

NumberAnimation {
target: genieEffect; property: 'minimize';
to: 0; duration: 700;
easing.type: Easing.InOutSine

}
PauseAnimation { duration: 1300 }

}
SequentialAnimation {

PauseAnimation { duration: 300 }
NumberAnimation {

target: genieEffect; property: 'bend'
to: 0; duration: 700;
easing.type: Easing.InOutSine }

PauseAnimation { duration: 1000 }
}

}

vertexShader: "
uniform highp mat4 qt_Matrix;
attribute highp vec4 qt_Vertex;
attribute highp vec2 qt_MultiTexCoord0;
uniform highp float height;
uniform highp float width;
uniform highp float minimize;

9.5. Vertex Shader 163

Qt5 Cadaques, Release 2015-03

uniform highp float bend;
uniform highp float side;
varying highp vec2 qt_TexCoord0;
void main() {

qt_TexCoord0 = qt_MultiTexCoord0;
highp vec4 pos = qt_Vertex;
pos.y = mix(qt_Vertex.y, height, minimize);
highp float t = pos.y / height;
t = (3.0 - 2.0 * t) * t * t;
pos.x = mix(qt_Vertex.x, side * width, t * bend);
gl_Position = qt_Matrix * pos;

}"
}

You can use now the effect simply like this:

import QtQuick 2.5

Rectangle {
width: 480; height: 240
color: '#1e1e1e'

GenieEffect {
source: Image { source: 'assets/lighthouse.jpg' }
MouseArea {

anchors.fill: parent
onClicked: parent.minimized = !parent.minimized

}
}

}

We have simplified the code by removing our background rectangle and we assigned the image directly to the
effect, instead of loading it inside a standalone image element.

Curtain Effect

In the last example for custom shader effects I would like to bring you the curtain effect. This effect was published
first in May 2011 as part of Qt labs for shader effects.

At that time I really loved these effects and the curtain effect was my favorite out of them. I just love how the
curtain opens and hide the background object.

164 Chapter 9. Shader Effects

http://labs.qt.nokia.com/2011/05/03/qml-shadereffectitem-on-qgraphicsview/

Qt5 Cadaques, Release 2015-03

I took the code and adapted it towards Qt 5, which was straightforward. Also O did some simplifications to be
able to use it better for a showcase. So if you are interested in the full example, please visit the labs blog.

Just a little bot for the background, the curtain is actually an image called fabric.jpg and it is the source for a
shader effect. The effect uses the vertex shader to swing the curtain and uses the fragment shader to provide some
shades. Here is a simple diagram to make you hopefully better understand the code.

The waved shades of the curtain are computed through a sin curve with 7 up/downs (7*PI=21.99...) on the width
of the curtain. The other important part is the swing. The topWidth of the curtain is animated when the curtain
is opened or closed. The bottomWidth follows the topWidth with a SpringAnimation. By this we create the effect
of the swinging bottom part of the curtain. The calculated swing provides the strength of this swing interpolated
over the y-component of the vertexes.

The curtain effect is located in the CurtainEffect.qml component where the fabric image act as the texture
source. There is nothing new on the use of shaders here, only a different way to manipulate the gl_Position in the
vertex shader and the gl_FragColor in the fragment shader.

import QtQuick 2.5

ShaderEffect {
anchors.fill: parent

mesh: GridMesh {
resolution: Qt.size(50, 50)

}

property real topWidth: open?width:20
property real bottomWidth: topWidth
property real amplitude: 0.1
property bool open: false
property variant source: effectSource

Behavior on bottomWidth {
SpringAnimation {

easing.type: Easing.OutElastic;
velocity: 250; mass: 1.5;
spring: 0.5; damping: 0.05

}
}

Behavior on topWidth {

9.6. Curtain Effect 165

Qt5 Cadaques, Release 2015-03

NumberAnimation { duration: 1000 }
}

ShaderEffectSource {
id: effectSource
sourceItem: effectImage;
hideSource: true

}

Image {
id: effectImage
anchors.fill: parent
source: "assets/fabric.png"
fillMode: Image.Tile

}

vertexShader: "
attribute highp vec4 qt_Vertex;
attribute highp vec2 qt_MultiTexCoord0;
uniform highp mat4 qt_Matrix;
varying highp vec2 qt_TexCoord0;
varying lowp float shade;

uniform highp float topWidth;
uniform highp float bottomWidth;
uniform highp float width;
uniform highp float height;
uniform highp float amplitude;

void main() {
qt_TexCoord0 = qt_MultiTexCoord0;

highp vec4 shift = vec4(0.0, 0.0, 0.0, 0.0);
highp float swing = (topWidth - bottomWidth) * (qt_Vertex.y / height);
shift.x = qt_Vertex.x * (width - topWidth + swing) / width;

shade = sin(21.9911486 * qt_Vertex.x / width);
shift.y = amplitude * (width - topWidth + swing) * shade;

gl_Position = qt_Matrix * (qt_Vertex - shift);

shade = 0.2 * (2.0 - shade) * ((width - topWidth + swing) / width);
}"

fragmentShader: "
uniform sampler2D source;
varying highp vec2 qt_TexCoord0;
varying lowp float shade;
void main() {

highp vec4 color = texture2D(source, qt_TexCoord0);
color.rgb *= 1.0 - shade;
gl_FragColor = color;

}"
}

The effect is used in the curtaindemo.qml file.

import QtQuick 2.5

Item {
id: root
width: background.width; height: background.height

166 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

Image {
id: background
anchors.centerIn: parent
source: 'assets/background.png'

}

Text {
anchors.centerIn: parent
font.pixelSize: 48
color: '#efefef'
text: 'Qt5 Cadaques'

}

CurtainEffect {
id: curtain
anchors.fill: parent

}

MouseArea {
anchors.fill: parent
onClicked: curtain.open = !curtain.open

}
}

The curtain is opened through a custom open property on the curtain effect. We use a MouseArea to trigger the
opening and closing of the curtain.

Qt GraphicsEffect Library

The graphics effect library is a collection of shader effects. Ready made by the Qt developers. It’s a great tool-set
to be used in your application but also a great source to learn how to build shaders.

The graphics effects library comes with a so called manual testbed which is a great tool to interactively discover
the different effects.

The testbed is located under $QTDIR/qtgraphicaleffects/tests/manual/testbed.

The effects library contains ca 20 effects. A list of the effect and a short description can be found below.

9.7. Qt GraphicsEffect Library 167

Qt5 Cadaques, Release 2015-03

Graphics Effects List

Table 9.1: Graphics Effects List

Category Effect Description
Blend Blend merges two source items by using a blend mode
Color BrightnessCon-

trast
adjusts brightness and contrast

Colorize sets color in the HSL color space
ColorOverlay applies a color layer
Desaturate reduces color saturation
GammaAdjust adjusts luminance
HueSaturation adjusts colors in the HSL color space
LevelAdjust adjusts colors in the RGB color space

Gradient ConicalGradient draws a conical gradient
LinearGradient draws a linear gradient
RadialGradient draws a radial gradient

Distortion Displace moves the pixels of the source item according to the specified
displacement source

Drop
Shadow

DropShadow draws a drop shadow

InnerShadow draws an inner shadow
Blur FastBlur applies a fast blur effect

GaussianBlur applies a higher quality blur effect
MaskedBlur applies a varying intensity blur effect
RecursiveBlur blurs repeatedly, providing a strong blur effect

Motion Blur DirectionalBlur applies a directional motion blur effect
RadialBlur applies a radial motion blur effect
ZoomBlur applies a zoom motion blur effect

Glow Glow draws an outer glow effect
Rectangu-
larGlow

draws a rectangular outer glow effect

Mask OpacityMask masks the source item with another item
ThresholdMask masks the source item with another item and applies a threshold value

Here is a example using the FastBlur effect from the Blur category:

import QtQuick 2.5
import QtGraphicalEffects 1.0

Rectangle {
width: 480; height: 240
color: '#1e1e1e'

Row {
anchors.centerIn: parent
spacing: 16

Image {
id: sourceImage
source: "assets/tulips.jpg"
width: 200; height: width
sourceSize: Qt.size(parent.width, parent.height)
smooth: true

}

FastBlur {
width: 200; height: width
source: sourceImage

168 Chapter 9. Shader Effects

Qt5 Cadaques, Release 2015-03

radius: blurred?32:0
property bool blurred: false

Behavior on radius {
NumberAnimation { duration: 1000 }

}

MouseArea {
id: area
anchors.fill: parent
onClicked: parent.blurred = !parent.blurred

}
}

}
}

The image to the left is the original image. Clicking the image on the right will toggle blurred property and
animated the blur radius from 0 to 32 during 1 second. The image on the left show the blurred image.

9.7. Qt GraphicsEffect Library 169

Qt5 Cadaques, Release 2015-03

170 Chapter 9. Shader Effects

CHAPTER 10

Multimedia

Section author: e8johan

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

The multimedia elements in the QtMultimedia makes it possible to playback and record media such as sound,
video or pictures. Decoding and encoding is handled through platform specific backends. For instance, the
popular gstreamer framework is used on Linux, while DirectShow is used on Windows and QuickTime on OS X.

The multimedia elements are not a part of the Qt Quick core API. Instead, they are provided through a separate
API made available by importing QtMultimedia 5.6 as shown below:

import QtMultimedia 5.6

Playing Media

The most basic case of multimedia integration in a QML application is for it to playback media. This is done
using the MediaPlayer element, optionally in combination with a VideoOutput element if the source is an
image or video. The MediaPlayer element has a source property pointing at the media to play. When a
media source has been bound, it is simply a matter of calling the play function to start playing.

If you want to play visual media, i.e. pictures or video, you must also setup a VideoOutput element. The
MediaPlayer running the playback is bound to the video output through the source property.

In the example shown below, the MediaPlayer is given a file with video contents as source. A
VideoOutput is created and bound to the media player. As soon as the main component has been fully initial-
ized, i.e. at Component.onCompleted, the player’s play function is called.

import QtQuick 2.5
import QtMultimedia 5.6

Item {
width: 1024
height: 600

MediaPlayer {
id: player
source: "trailer_400p.ogg"

}

VideoOutput {
anchors.fill: parent
source: player

171

https://bitbucket.org/e8johan

Qt5 Cadaques, Release 2015-03

}

Component.onCompleted: {
player.play();

}
}

Basic operations such as altering the volume when playing media is controlled through the volume property
of the MediaPlayer element. There are other useful properties as well. For instance, the duration and
position properties can be used to build a progress bar. If the seekable property is true, it is even possible
to update the position when the progress bar is tapped. The example below shows how this is added to the
basic playback example above.

Rectangle {
id: progressBar

anchors.left: parent.left
anchors.right: parent.right
anchors.bottom: parent.bottom
anchors.margins: 100

height: 30

color: "lightGray"

Rectangle {
anchors.left: parent.left
anchors.top: parent.top
anchors.bottom: parent.bottom

width: player.duration>0?parent.width*player.position/player.duration:0

color: "darkGray"
}

MouseArea {
anchors.fill: parent

onClicked: {
if (player.seekable) {

player.position = player.duration * mouse.x/width;
}

}
}

}

The position property is only updated once per second in the default case. This means that the progress
bar will update in large steps unless the duration of the media is long enough, compared to the number pixels
that the progress bar is wide. This can, however, be changed through accessing the mediaObject property
and its notifyInterval property. It can be set to the number of milliseconds between each position update,
increasing the smoothness of the user interface.

Connections {
target: player
onMediaObjectChanged: {

if (player.mediaObject) {
player.mediaObject.notifyInterval = 50;

}
}

}

172 Chapter 10. Multimedia

Qt5 Cadaques, Release 2015-03

Todo

The code above does not have any effect on the update interval! There seems to be no media object...

When using MediaPlayer to build a media player, it is good to monitor the status property of
the player. It is an enumeration of the possible statuses, ranging from MediaPlayer.Buffered``to
``MediaPlayer.InvalidMedia. The possible values are summarized in the bullets below:

• MediaPlayer.UnknownStatus. The status is unknown.

• MediaPlayer.NoMedia. The player has no media source assigned. Playback is stopped.

• MediaPlayer.Loading. The player is loading the media.

• MediaPlayer.Loaded. The media has been loaded. Playback is stopped.

• MediaPlayer.Stalled. The loading of media has stalled.

• MediaPlayer.Buffering. The media is being buffered.

• MediaPlayer.Buffered. The media has been buffered, this means that the player can start playing the
media.

• MediaPlayer.EndOfMedia. The end of the media has been reached. Playback is stopped.

• MediaPlayer.InvalidMedia. The media cannot be played. Playback is stopped.

As mentioned in the bullets above, the playback state can vary over time. Calling play, pause or stop al-
ters the state, but the media in question can also have effect. For example, the end can be reached, or it can be
invalid, causing playback to stop. The current playback state can be tracked through the playbackState
property. The values can be MediaPlayer.PlayingState, MediaPlayer.PausedState or
MediaPlayer.StoppedState.

Using the autoPlay property, the MediaPlayer can be made to attempt go to the playing state as soon as a
the source property is changed. A similar property is the autoLoad causing the player to try to load the media
as soon as the source property is changed. The latter property is enabled by default.

It is also possible to let the MediaPlayer to loop a media item. The loops property controls how many times
the source is to be played. Setting the property to MediaPlayer.Infinite causes endless looping. Great
for continious animations or a looping background song.

Sound Effects

When playing sound effects, the response time from requesting playback until actually playing becomes important.
In this situation, the SoundEffect element comes in handy. By setting up the source property, a simple call
to the play function immediately starts playback.

This can be utilized for audio feedback when tapping the screen, as shown below.

SoundEffect {
id: beep
source: "beep.wav"

}

Rectangle {
id: button

anchors.centerIn: parent

width: 200
height: 100

color: "red"

10.2. Sound Effects 173

Qt5 Cadaques, Release 2015-03

MouseArea {
anchors.fill: parent
onClicked: beep.play()

}
}

The element can also be utilized to accompany a transition with audio. To trigger playback from a transition, the
ScriptAction element is used.

SoundEffect {
id: swosh
source: "swosh.wav"

}

transitions: [
Transition {

ParallelAnimation {
ScriptAction { script: swosh.play(); }
PropertyAnimation { properties: "rotation"; duration: 200; }

}
}

]

In addition to the play function, a number of properties similar to the ones offered by MediaPlayer are
available. Examples are volume and loops. The latter can be set to SoundEffect.Infinite for infinite
playback. To stop playback, call the stop function.

Note: When the PulseAudio backend is used, stop will not stop instantaneously, but only prevent further loops.
This is due to limitations in the underlying API.

Video Streams

The VideoOutput element is not limited to usage in combination with MediaPlayer elements. It can also
be used directly with video sources to show a live video stream. Using a Camera element as source and the
application is complete. The video stream from a Camera can be used to provide a live stream to the user. This
stream works as the search view when capturing photos.

import QtQuick 2.5
import QtMultimedia 5.6

Item {
width: 1024
height: 600

VideoOutput {
anchors.fill: parent
source: camera

}

Camera {
id: camera

}
}

174 Chapter 10. Multimedia

Qt5 Cadaques, Release 2015-03

Capturing Images

One of the key features of the Camera element is that is can be used to take pictures. We will use this in a simple
stop-motion application. In it, you will learn how to show a viewfinder, snap photos and to keep track of the
pictures taken.

The user interface is shown below. It consists of three major parts. In the background, you will find the viewfinder,
to the right, a column of buttons and at the bottom, a list of images taken. The idea is to take a series of photos,
then click the Play Sequence button. This will play the images back, creating a simple stop-motion film.

The viewfinder part of the camera is simply a Camera element used as source in a VideoOutput. This will
show the user a live videostream from the camera.

VideoOutput {
anchors.fill: parent
source: camera

}

Camera {
id: camera

}

The list of photos is a ListView oriented horizontally shows images from a ListModel called imagePaths.
In the background, a semi-transparent black Rectangle is used.

ListModel {
id: imagePaths

}

ListView {
id: listView

anchors.left: parent.left
anchors.right: parent.right
anchors.bottom: parent.bottom
anchors.bottomMargin: 10

height: 100

orientation: ListView.Horizontal
spacing: 10

model: imagePaths

delegate: Image {
height: 100
source: path
fillMode: Image.PreserveAspectFit

10.4. Capturing Images 175

Qt5 Cadaques, Release 2015-03

}

Rectangle {
anchors.fill: parent
anchors.topMargin: -10

color: "black"
opacity: 0.5

}
}

For the shooting of images, you need to know that the Camera element contains a set of sub-elements for various
tasks. To capture still pictures, the Camera.imageCapture element is used. When you call the capture
method, a picture is taken. This results in the Camera.imageCapture emitting first the imageCaptured
signal followed by the imageSaved signal.

Button {
id: shotButton

text: "Take Photo"
onClicked: {

camera.imageCapture.capture();
}

}

To intercept the signals of a sub-element, a Connections element is needed. In this case, we don’t need to
show a preview image, but simply add the resulting image to the ListView at the bottom of the screen. Shown
in the example below, the path to the saved image is provided as the path argument with the signal.

Connections {
target: camera.imageCapture

onImageSaved: {
imagePaths.append({"path": path})
listView.positionViewAtEnd();

}
}

For showing a preview, connect to the imageCaptured signal and use the preview signal argument as
source of an Image element. A requestId signal argument is sent along both the imageCaptured and
imageSaved. This value is returned from the capture method. Using this, the capture of an image can be
traced through the complete cycle. This way, the preview can be used first and then be replaced by the properly
saved image. This, however, is nothing that we do in the example.

The last part of the application is the actual playback. This is driven using a Timer element and some JavaScript.
The _imageIndex variable is used to keep track of the currently shown image. When the last image has been
shown, the playback is stopped. In the example, the root.state is used to hide parts of the user interface when
playing the sequence.

property int _imageIndex: -1

function startPlayback()
{

root.state = "playing";
setImageIndex(0);
playTimer.start();

}

function setImageIndex(i)
{

_imageIndex = i;

176 Chapter 10. Multimedia

Qt5 Cadaques, Release 2015-03

if (_imageIndex >= 0 && _imageIndex < imagePaths.count)
image.source = imagePaths.get(_imageIndex).path;

else
image.source = "";

}

Timer {
id: playTimer

interval: 200
repeat: false

onTriggered: {
if (_imageIndex + 1 < imagePaths.count)
{

setImageIndex(_imageIndex + 1);
playTimer.start();

}
else
{

setImageIndex(-1);
root.state = "";

}
}

}

Advanced Techniques

Todo

The Camera API of Qt 5 is really lacking in documentation right now. I would love to cover more advanced
camera controls such as exposure and focusing, but there are no ranges or values, nor clear guides to how to use
the APIs in the reference docs right now.

Implementing a Playlist

The Qt 5 multimedia API does not provide support for playlists. Luckly, it is easy to build one. The idea is to
be able to set it up with a model of items and and a MediaPlayer element, as shown below. The Playlist
element is resposible for setting the source of the MediaPlayer, while the playstate is controlled via the
player.

MediaPlayer {
id: player
playlist: Playlist {

PlaylistItem { source: "trailer_400p.ogg" }
PlaylistItem { source: "trailer_400p.ogg" }
PlaylistItem { source: "trailer_400p.ogg" }

}
}

The first half of the Playlist element, shown below, takes care of setting the source element given an index
in the setIndex function. It also implements the next and previous functions to navigate the list.

Item {
id: root

10.5. Advanced Techniques 177

Qt5 Cadaques, Release 2015-03

property int index: 0
property MediaPlayer mediaPlayer
property ListModel items: ListModel {}

function setIndex(i) {
console.log("setting index to: " + i);

index = i;

if (index < 0 || index >= items.count) {
index = -1;
mediaPlayer.source = "";

} else {
mediaPlayer.source = items.get(index).source;

}
}

function next() {
setIndex(index + 1);

}

function previous() {
setIndex(index + 1);

}

The trick to make the playlist continue to the next element at the end of each element is to monitor the status
property of the MediaPlayer. As soon as the MediaPlayer.EndOfMedia state is reached, the index is
increased and playback resumed, or, if the end of the list is reached, the playback is stopped.

Connections {
target: root.mediaPlayer

onStopped: {
if (root.mediaPlayer.status == MediaPlayer.EndOfMedia) {

root.next();
if (root.index == -1) {

root.mediaPlayer.stop();
} else {

root.mediaPlayer.play();
}

}
}

}

Summary

The media API provided by Qt provides mechanisms for playing and capturing video and audio. Through the
VideoOutput element and video source can be displayed in the user interface. Through the MediaPlayer
element, most playback can be handled, even though the SoundEffect can be used for low-latency sounds. For
capturing, or only showing a live video stream, the Camera element is used.

178 Chapter 10. Multimedia

CHAPTER 11

Networking

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Qt 5 comes with a rich set of networking classes on the C++ side. There are for example high level classes
on the http protocol layer in a request-reply fashion such as QNetworkRequest, QNetworkReply and
QNetworkAccessManager. But also lower levels classes on the TCP/IP or UDP protocol layer such as
QTcpSocket, QTcpServer and QUdpSocket. Additional classes exists to manage proxies, network cache
and also the systems network configuration.

This chapter will not be about C++ networking, this chapter is about Qt Quick and networking. So how can I
connect my QML/JS user interface directly with a network service or how can I serve my user interface via a
network service. There are good books and references out there to cover network programming with Qt/C++.
Then it is just a manner to read the chapter about C++ integration to come up with an integration layer to feed
your data into the Qt Quick world.

Serving UI via HTTP

To load a simple user interface via HTTP we need to have a web-server, which serves the UI documents. We start
of with our own simple web-server using a python one-liner. But first we need to have our demo user interface.
For this we create a small main.qml file in our project folder and create a red rectangle inside.

// main.qml
import QtQuick 2.5

Rectangle {
width: 320
height: 320
color: '#ff0000'

}

To serve this file we launch a small python script:

$ cd <PROJECT>
python -m SimpleHTTPServer 8080

Now our file should be reachable via http://localhost:8080/main.qml. You can test it with:

$ curl http://localhost:8080/main.qml

179

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

Or just point your browser to the location. Your browser does not understand QML and will not be able to render
the document through. We need to create now such a browser for QML documents. To render the document we
need to point our qmlscene to the location. Unfortunately the qmlscene is limited to local files only. We
could overcome this limitation by writing our own qmlscene replacement or simple dynamically load it using
QML. We choose the dynamic loading as it works just fine. For this we use a loader element to retrieve for us the
remote document.

// remote.qml
import QtQuick 2.5

Loader {
id: root
source: 'http://localhost:8080/main2.qml'
onLoaded: {

root.width = item.width
root.height = item.height

}
}

Now we can ask the qmlscene to load the local remote.qml loader document. There is one glitch still. The
loader will resize to the size of the loaded item. And our qmlscene needs also to adapt to that size. This can be
accomplished using the --resize-to-root option to the qmlscene:

$ qmlscene --resize-to-root remote.qml

Resize to root tells the qml scene to resize its window to the size of the root element. The remote is now loading
the main.qml from our local server and resizes itself to the loaded user interface. Sweet and simple.

Note: If you do not want to run a local server you can also use the gist service from GitHub. Gist is a clipboard
like online service like PasteBin and others. It is available under https://gist.github.com . I created for this example
a small gist under the url https://gist.github.com/jryannel/7983492 . This will reveal a green rectangle. As the gist
url will provide the web-site as HTML code we need to attach a /raw to the url to retrieve the raw file and not
the HTML code.

// remote.qml
import QtQuick 2.5

Loader {
id: root
source: 'https://gist.github.com/jryannel/7983492/raw'
onLoaded: {

root.width = item.width
root.height = item.height

}
}

To load another file over the network you just need to reference the component name. For example a
Button.qml can be accessed as normal, as long it is in the same remote folder.

Todo

Is this true? What are the rules?

Networked Components

Let us create a small experiment. We add to our remote side a small button as a reusable component.

180 Chapter 11. Networking

https://gist.github.com
https://gist.github.com/jryannel/7983492

Qt5 Cadaques, Release 2015-03

- src/main.qml
- src/Button.qml

We modify our main.qml to use the button and save it as main2.qml:

import QtQuick 2.5

Rectangle {
width: 320
height: 320
color: '#ff0000'

Button {
anchors.centerIn: parent
text: 'Click Me'
onClicked: Qt.quit()

}
}

And launch our web-server again:

$ cd src
python -m SimpleHTTPServer 8080

And our remote loader loads the main QML via http again:

$ qmlscene --resize-to-root remote.qml

What we see is an error:

http://localhost:8080/main2.qml:11:5: Button is not a type

So QML can not resolve the button component when it is loaded remotely. If the code would be locally qmlscene
src/main.qml this would be no issue. Locally Qt can parse the directory and detect which components are
available but remotely there is no “list-dir” function for http. We can force QML to load the element using the
import statement inside main.qml:

import "http://localhost:8080" as Remote

...

Remote.Button { ... }

This will work then when the qmlscene is run again:

$ qmlscene --resize-to-root remote.qml

Here the full code:

// main2.qml
import QtQuick 2.5
import "http://localhost:8080" 1.0 as Remote

Rectangle {
width: 320
height: 320
color: '#ff0000'

Remote.Button {
anchors.centerIn: parent
text: 'Click Me'
onClicked: Qt.quit()

11.1. Serving UI via HTTP 181

Qt5 Cadaques, Release 2015-03

}
}

A better option is to use the qmldir file on the server side to control the export.

// qmldir
Button 1.0 Button.qml

And then updating the main.qml:

import "http://localhost:8080" 1.0 as Remote

...

Remote.Button { ... }

Note: Loading

When using components from a local file system, they are created immediately without a latency. When compo-
nents are loaded via the network they are created asynchronously. This has the effect that the time of creation is
unknown and an element may not yet be fully loaded when others are already completed. Take this into account
when working with components loaded over the network.

Templating

When working with HTML projects they often use template driven development. A small HTML stub is expanded
on the server side with code generated by the server using a template mechanism. For example for a photo list the
list header would be coded in HTML and the dynamic image list would be dynamically generated using a template
mechanism. In general this can also be done using QML but there are some issues with it.

First it is not necessary. The reason HTML developers are doing this is to overcome limitations on the HTML
backend. There is no component model yet in HTML so dynamic aspects have to be covered using these mech-
anism or using programmatically javascript on the client side. Many JS frameworks are out there (jQuery, dojo,
backbone, angular, ...) to solve this issue and put more logic into the client-side browser to connect with a network
service. The client would then just use a web-service API (e.g. serving JSON or XML data) to communicate with
the server. This seems also the better approach for QML.

The second issue is the component cache from QML. When QML accesses a component it caches the render-
tree and just loads the cached version for rendering. A modified version on disk or remote would not be detected
without restarting the client. To overcome this issue we could use a trick. We could use URL fragments to load the
url (e.g. http://localhost:8080/main.qml#1234), where ‘#1234’ is the fragment. The HTTP server serves always
the same document but QML would store this document using the full URL, including the fragment. Every time
we would access this URL the fragment would need to change and the QML cache would not get a positive hit. A
fragment could be for example the current time in milli seconds or a random number.

Loader {
source: 'http://localhost:8080/main.qml#' + new Date().getTime()

}

In summary templating is possible but not really recommended and does not play to the strength of QML. A better
approach is to use web-services which serve JSON or XML data.

HTTP Requests

A http request is in Qt typically done using QNetworkRequest and QNetworkReply from the c++ site and
then the response would be pushed using the Qt/C++ integration into the QML space. So we try to push the

182 Chapter 11. Networking

http://localhost:8080/main.qml#1234

Qt5 Cadaques, Release 2015-03

envelope here a little bit to use the current tools Qt Quick gives us to communicate with a network endpoint.
For this we use a helper object to make http request, response cycle. It comes in the form of the java script
XMLHttpRequest object.

The XMLHttpRequest object allows the user to register a response handle function and a url. A request can
be sent using one of the http verbs (get, post, put, delete, ...) to make the request. When the response arrive the
handle function is called. The handle function is called several times. Every-time the request state has changed
(for example headers have arrived or request is done).

Here a short example:

function request() {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {
print('HEADERS_RECEIVED');

} else if(xhr.readyState === XMLHttpRequest.DONE) {
print('DONE');

}
}
xhr.open("GET", "http://example.com");
xhr.send();

}

For a response you can get the XML format or just the raw text. It is possible to iterate over the resulting XML
but more commonly used is the raw text nowadays for a JSON formatted response. The JSON document will be
used to convert text to a JS object using JSON.parse(text).

...
} else if(xhr.readyState === XMLHttpRequest.DONE) {

var object = JSON.parse(xhr.responseText.toString());
print(JSON.stringify(object, null, 2));

}

In the response handler, we access the raw response text and convert it into a javascript object. This JSON object
is now a valid JS object (in javascript an object can be an object or an array).

Note: It seems the toString() conversion first makes the code more stable. Without the explicit conversion I
had several times parser errors. Not sure what the cause it.

Flickr Calls

Let us have a look on a more real world example. A typical example is to use the
Flickr service to retrieve a public feed of the new uploaded pictures. For this we can
use the http://api.flickr.com/services/feeds/photos_public.gne url. Un-
fortunately it returns by default an XML stream, which could be easily parsed by the
XmlListModel in qml. For the sake of the example we would like to concentrate on JSON
data. To become a clean JSON response we need to attach some parameters to the request:
http://api.flickr.com/services/feeds/photos_public.gne?format=json&nojsoncallback=1.
This will return a JSON response without the JSON callback.

Note: A JSON callback wraps the JSON response into a function call. This is a shortcut used on HTML
programming where a script tag is used to make a JSON request. The response will trigger a local function
defined by the callback. There is no mechanism which works with JSON callbacks in QML.

Let us first examine the response by using curl:

11.3. HTTP Requests 183

Qt5 Cadaques, Release 2015-03

curl "http://api.flickr.com/services/feeds/photos_public.gne?format=json&
→˓nojsoncallback=1&tags=munich"

The response will be something like this:

{
"title": "Recent Uploads tagged munich",
...
"items": [

{
"title": "Candle lit dinner in Munich",
"media": {"m":"http://farm8.staticflickr.com/7313/11444882743_2f5f87169f_m.

→˓jpg"},
...
},{
"title": "Munich after sunset: a train full of \"must haves\" =",
"media": {"m":"http://farm8.staticflickr.com/7394/11443414206_a462c80e83_m.

→˓jpg"},
...
}

]
...

}

The returned JSON document has a defined structure. An object which has a title and an items property. Where
the title is a string and items is an array of objects. When converting this text into a JSON document you can
access the individual entries, as it is a valid JS object/array structure.

// JS code
obj = JSON.parse(response);
print(obj.title) // => "Recent Uploads tagged munich"
for(var i=0; i<obj.items.length; i++) {

// iterate of the items array entries
print(obj.items[i].title) // title of picture
print(obj.items[i].media.m) // url of thumbnail

}

As a valid JS array we can use the obj.items array also as a model for a list view. We will try to accomplish
this now. First we need to retrieve the response and convert it into a valid JS object. And then we can just set the
response.items property as a model to a list view.

function request() {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if(...) {
...

} else if(xhr.readyState === XMLHttpRequest.DONE) {
var response = JSON.parse(xhr.responseText.toString());
// set JS object as model for listview
view.model = response.items;

}
}
xhr.open("GET", "http://api.flickr.com/services/feeds/photos_public.gne?

→˓format=json&nojsoncallback=1&tags=munich");
xhr.send();

}

Here is the full source code, where we create the request, when the component is loaded. The request response is
then used as model for our simple list view.

import QtQuick 2.5

184 Chapter 11. Networking

Qt5 Cadaques, Release 2015-03

Rectangle {
width: 320
height: 480
ListView {

id: view
anchors.fill: parent
delegate: Thumbnail {

width: view.width
text: modelData.title
iconSource: modelData.media.m

}
}

function request() {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {
print('HEADERS_RECEIVED')

} else if(xhr.readyState === XMLHttpRequest.DONE) {
print('DONE')
var json = JSON.parse(xhr.responseText.toString())
view.model = json.items

}
}
xhr.open("GET", "http://api.flickr.com/services/feeds/photos_public.gne?

→˓format=json&nojsoncallback=1&tags=munich");
xhr.send();

}

Component.onCompleted: {
request()

}
}

When the document is fully loaded (Component.onCompleted) we request the latest feed content from
Flickr. On arrival we parse the JSON response and set the items array as the model for our view. The list view
has a delegate, which displays the thumbnail icon and the title text in a row.

An other option would be to have a placeholder ListModel and append each item onto the list model. To support
larger models it is required to support pagination (e.g page 1 of 10) and lazy content retrieval.

Local files

Is it also possible to load local (XML/JSON) files using the XMLHttpRequest. For example a local file named
“colors.json” can be loaded using:

xhr.open("GET", "colors.json");

We use this to read a color table and display it as a grid. It is not possible to modify the file from the Qt Quick side.
To store data back to the source we would need a small REST based HTTP server or a native Qt Quick extension
for file access.

import QtQuick 2.5

Rectangle {
width: 360
height: 360
color: '#000'

GridView {

11.4. Local files 185

Qt5 Cadaques, Release 2015-03

id: view
anchors.fill: parent
cellWidth: width/4
cellHeight: cellWidth
delegate: Rectangle {

width: view.cellWidth
height: view.cellHeight
color: modelData.value

}
}

function request() {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {
print('HEADERS_RECEIVED')

} else if(xhr.readyState === XMLHttpRequest.DONE) {
print('DONE');
var obj = JSON.parse(xhr.responseText.toString());
view.model = obj.colors

}
}
xhr.open("GET", "colors.json");
xhr.send();

}

Component.onCompleted: {
request()

}
}

Instead of using the XMLHttpRequest is is also possible to use the XmlListModel to access local files.

import QtQuick.XmlListModel 2.0

XmlListModel {
source: "http://localhost:8080/colors.xml"
query: "/colors"
XmlRole { name: 'color'; query: 'name/string()' }
XmlRole { name: 'value'; query: 'value/string()' }

}

With the XmlListModel it is only possible to read XML files and not JSON files.

REST API

To use a web-service, we first need to create one. We will use Flask (http://flask.pocoo.org) a simple HTTP app
server based on python to create a simple color web-service. You could also use every other web server which
accepts and returns JSON data. The idea is to have a list of named colors, which can be managed via the web-
service. Managed in this case means CRUD (create-read-update-delete).

A simple web-service in Flask can be written in one file. We start with an empty server.py file. Inside this file,
we create some boiler-code and load our initial colors from an external JSON file. See also the Flask quickstart
documentation.

from flask import Flask, jsonify, request
import json

colors = json.load(file('colors.json', 'r'))

186 Chapter 11. Networking

http://flask.pocoo.org
http://flask.pocoo.org/docs/quickstart/

Qt5 Cadaques, Release 2015-03

app = Flask(__name__)

... service calls go here

if __name__ == '__main__':
app.run(debug = True)

When you run this script, it will provide a web-server at http://localhost:5000, which does not serve anything
useful yet.

We will now start adding our CRUD (Create,Read,Update,Delete) endpoints to our little web-service.

Read Request

To read data from our web-server, we will provide a GET method for all colors.

@app.route('/colors', methods = ['GET'])
def get_colors():

return jsonify({ "colors" : colors })

This will return the colors under the ‘/colors’ endpoint. To test this we can use curl to create a http request.

curl -i -GET http://localhost:5000/colors

Which will return us the list of colors as JSON data.

Read Entry

To read an individual color by name we provide the details endpoint, which is located under ‘/colors/<name>’.
The name is a parameter to the endpoint, which identifies an individual color.

@app.route('/colors/<name>', methods = ['GET'])
def get_color(name):

for color in colors:
if color["name"] == name:

return jsonify(color)

And we can test it with using curl again. For example to get the red color entry.

curl -i -GET http://localhost:5000/colors/red

It will return one color entry as JSON data.

Create Entry

Till now we have just used HTTP GET methods. To create an entry on the server side, we will use a POST method
and pass the new color information with the POST data. The endpoint location is the same as to get all colors. But
this time we expect a POST request.

@app.route('/colors', methods= ['POST'])
def create_color():

color = {
'name': request.json['name'],
'value': request.json['value']

}
colors.append(color)
return jsonify(color), 201

11.5. REST API 187

http://localhost:5000

Qt5 Cadaques, Release 2015-03

Curl is flexible enough to allow us to provide JSON data as the new entry inside the POST request.

curl -i -H "Content-Type: application/json" -X POST -d '{"name":"gray1","value":"
→˓#333"}' http://localhost:5000/colors

Update Entry

To update an individual entry we use the PUT HTTP method. The endpoint is the same as to retrieve an individual
color entry. When the color was updated successfully we return the updated color as JSON data.

@app.route('/colors/<name>', methods= ['PUT'])
def update_color(name):

for color in colors:
if color["name"] == name:

color['value'] = request.json.get('value', color['value'])
return jsonify(color)

In the curl request we only provide the values to be updated as JSON data and the a named endpoint to identify
the color to be updated.

curl -i -H "Content-Type: application/json" -X PUT -d '{"value":"#666"}' http://
→˓localhost:5000/colors/red

Delete Entry

Deleting an entry is done using the DELETE HTTP verb. It also uses the same endpoint for an individual color,
but this time the DELETE HTTP verb.

@app.route('/colors/<name>', methods=['DELETE'])
def delete_color(name):

success = False
for color in colors:

if color["name"] == name:
colors.remove(color)
success = True

return jsonify({ 'result' : success })

This request looks similar like the GET request for an individual color.

curl -i -X DELETE http://localhost:5000/colors/red

Now we can read all colors, read a specific color, create a new color, update a color and delete a color. Also we
know the HTTP endpoints to our API.

Action HTTP Endpoint
Read All GET http://localhost:5000/colors
Create Entry POST http://localhost:5000/colors
Read Entry GET http://localhost:5000/colors/<name>
Update Entry PUT http://localhost:5000/colors/<name>
Delete Entry DELETE http://localhost:5000/colors/<name>

Our little REST server is complete now and we can focus on QML and the client side. To create an easy to use
API we need to map each action to an individual HTTP request and provide a simple API to our users.

Client REST

To demonstrate a REST client we write a small color grid. The color grid displays the colors retrieved from the
web-service via HTTP requests. Our user interface provides the following commands:

188 Chapter 11. Networking

http://localhost:5000/colors
http://localhost:5000/colors
http://localhost:5000/colors
http://localhost:5000/colors
http://localhost:5000/colors

Qt5 Cadaques, Release 2015-03

• Get color list

• Create color

• Read last color

• Update last color

• Delete last color

We bundle our API into an own JS file called colorservice.js and import it into our UI as Service. Inside
the service module we create a helper function to make the HTTP requests for us:

// colorservice.js
function request(verb, endpoint, obj, cb) {

print('request: ' + verb + ' ' + BASE + (endpoint?'/' + endpoint:''))
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {

print('xhr: on ready state change: ' + xhr.readyState)
if(xhr.readyState === XMLHttpRequest.DONE) {

if(cb) {
var res = JSON.parse(xhr.responseText.toString())
cb(res);

}
}

}
xhr.open(verb, BASE + (endpoint?'/' + endpoint:''));
xhr.setRequestHeader('Content-Type', 'application/json');
xhr.setRequestHeader('Accept', 'application/json');
var data = obj?JSON.stringify(obj):''
xhr.send(data)

}

It takes four arguments. The verb, which defines the HTTP verb to be used (GET, POST, PUT, DELETE). The
second parameter is the endpoint to be used as postfix to the BASE address (e.g. ‘http://localhost:5000/colors‘).
The third parameter is the optional obj, to be send as JSON data to the service. The last parameter defines a
callback to be called, when the response returns. The callback receives a response object with the response data.
Before we send the request, we indicate that we send and accept JSON data by modifying the request header.

Using this request helper function we can implement the simple commands we defined earlier (create, read, update,
delete):

// colorservice.js
function get_colors(cb) {

// GET http://localhost:5000/colors
request('GET', null, null, cb)

}

function create_color(entry, cb) {
// POST http://localhost:5000/colors
request('POST', null, entry, cb)

}

function get_color(name, cb) {
// GET http://localhost:5000/colors/<name>
request('GET', name, null, cb)

}

function update_color(name, entry, cb) {
// PUT http://localhost:5000/colors/<name>
request('PUT', name, entry, cb)

}

function delete_color(name, cb) {
// DELETE http://localhost:5000/colors/<name>

11.5. REST API 189

http://localhost:5000/colors

Qt5 Cadaques, Release 2015-03

request('DELETE', name, null, cb)
}

This code resides in the service implementation. In the UI we use the service to implement our commands. We
have a ListModel with the id gridModel as data provider for the GridView. The commands are indicated
using a Button ui element.

Reading the color list from the server.

// rest.qml
import "colorservice.js" as Service
...
// read colors command
Button {

text: 'Read Colors';
onClicked: {

Service.get_colors(function(resp) {
print('handle get colors resp: ' + JSON.stringify(resp));
gridModel.clear();
var entries = resp.data;
for(var i=0; i<entries.length; i++) {

gridModel.append(entries[i]);
}

});
}

}

Create a new color entry on the server.

// rest.qml
import "colorservice.js" as Service
...
// create new color command
Button {

text: 'Create New';
onClicked: {

var index = gridModel.count-1
var entry = {

name: 'color-' + index,
value: Qt.hsla(Math.random(), 0.5, 0.5, 1.0).toString()

}
Service.create_color(entry, function(resp) {

print('handle create color resp: ' + JSON.stringify(resp))
gridModel.append(resp)

});
}

}

Reading a color based on its name.

// rest.qml
import "colorservice.js" as Service
...
// read last color command
Button {

text: 'Read Last Color';
onClicked: {

var index = gridModel.count-1
var name = gridModel.get(index).name
Service.get_color(name, function(resp) {

print('handle get color resp:' + JSON.stringify(resp))
message.text = resp.value

});

190 Chapter 11. Networking

Qt5 Cadaques, Release 2015-03

}
}

Update a color entry on the server based on the color name.

// rest.qml
import "colorservice.js" as Service
...
// update color command
Button {

text: 'Update Last Color'
onClicked: {

var index = gridModel.count-1
var name = gridModel.get(index).name
var entry = {

value: Qt.hsla(Math.random(), 0.5, 0.5, 1.0).toString()
}
Service.update_color(name, entry, function(resp) {

print('handle update color resp: ' + JSON.stringify(resp))
var index = gridModel.count-1
gridModel.setProperty(index, 'value', resp.value)

});
}

}

Delete a color by the color name.

// rest.qml
import "colorservice.js" as Service
...
// delete color command
Button {

text: 'Delete Last Color'
onClicked: {

var index = gridModel.count-1
var name = gridModel.get(index).name
Service.delete_color(name)
gridModel.remove(index, 1)

}
}

This concludes the CRUD (create, read, update, delete) operations using a REST API. There are also other possi-
bilities to generate a Web-Service API. One could be module based and each module would have an one endpoint.
And the API could be defined using JSON RPC (http://www.jsonrpc.org/). Sure also XML based API are possible
and but the JSON approach has great advantages as the parsing is build into the QML/JS as part of JavaScript.

Authentication using OAuth

OAuth is an open protocol to allow secure authorization in a simple and standard method from web, mobile
and desktop applications. OAuth is used to authenticate a client against common web-services such as Google,
Facebook and Twitter.

Note: For a custom web-service you could also use the standard HTTP authentication for
example by using the XMLHttpRequest username and password in the get method (e.g.
xhr.open(verb,url,true,username,password))

OAuth is currently not part of a QML/JS API. So you would need to write some C++ code and export the authen-
tication to QML/JS. Another issue would be the secure storage of the access token.

11.6. Authentication using OAuth 191

http://www.jsonrpc.org/

Qt5 Cadaques, Release 2015-03

Here are some links which we find useful:

• http://oauth.net/

• http://hueniverse.com/oauth/

• https://github.com/pipacs/o2

• http://www.johanpaul.com/blog/2011/05/oauth2-explained-with-qt-quick/

Engin IO

Engin.IO is a web-service run by DIGIA. It enables to access from inside Qt/QML application to the NoSQL stor-
age from Engin.IO. It is a cloud based storage object store with an easy access Qt/QML API and an administration
console. If you want to store some data in the cloud from a QML application, this would be an easy entry path
with an excellent QML/JS support.

Please refer to the EnginIO documentation for further help.

Web Sockets

The WebSockets module provides an impementation of the WebSockets protocol for WebSockets clients and
servers. It mirrors the Qt CPP module. It allows to send string and binary messages using a full duplex communi-
cation channel. A websocket is normally established by making a HTTP connection to the server and the server
then “upgrades” the connection to a WebSocket connection.

In Qt/QML you can also simple use the WebSocket and WebSocketServer objects to creates direct websocket
connection. The websocket protocol uses the “ws” url schema or “wss” for a secure connection.

You can use the web socket qml module by importing it first.

import Qt.WebSockets 1.0

WebSocket {
id: socket

}

To test your web socket we will use the echo server from http://websocket.org.

import QtQuick 2.5
import Qt.WebSockets 1.0

Text {
width: 480
height: 48

horizontalAlignment: Text.AlignHCenter
verticalAlignment: Text.AlignVCenter

WebSocket {
id: socket
url: "ws://echo.websocket.org"
active: true
onTextMessageReceived: {

text = message
}
onStatusChanged: {

if (socket.status == WebSocket.Error) {
console.log("Error: " + socket.errorString)

} else if (socket.status == WebSocket.Open) {
socket.sendTextMessage("ping")

192 Chapter 11. Networking

http://oauth.net/
http://hueniverse.com/oauth/
https://github.com/pipacs/o2
http://www.johanpaul.com/blog/2011/05/oauth2-explained-with-qt-quick/
http://engin.io
http://websocket.org

Qt5 Cadaques, Release 2015-03

} else if (socket.status == WebSocket.Closed) {
text += "\nSocket closed"

}
}

}
}

You should see the ping message we send socket.sendTextMessage("ping") as response in the text
field.

WS Server

You can easily create your own WS server using the C++ part of the Qt WebSocket or use a different WS im-
plementation, which I find very interesting. It is interesting because it allows to connect the amazing rendering
quality of QML with the great expanding web application servers. In this example we will use a Node JS based
web socket server using the ws module. For this you first need to install node js. Afterwards create a ws_server
folder and install the ws package using the node package manager (npm).

The code shall create a simple echo server in NodeJS to echo our messages back to our QML client.

$ cd ws_server
$ npm install ws

The npm tool downloads and installs the ws package and dependencies into you local folder.

A server.js file will be our server implementation. The server code will create a web socket server on port
3000 and listens to an incoming connection. On an incoming connection it will send out a greeting and waits for
client messages. Each message a client sends on a socket will be send back to the client.

var WebSocketServer = require('ws').Server;

var server = new WebSocketServer({ port : 3000 });

server.on('connection', function(socket) {
console.log('client connected');
socket.on('message', function(msg) {

console.log('Message: %s', msg);
socket.send(msg);

});
socket.send('Welcome to Awesome Chat');

});

console.log('listening on port ' + server.options.port);

You need to get used to the notation of JavaScript and the function callbacks.

11.8. Web Sockets 193

https://npmjs.org/package/ws
http://nodejs.org/

Qt5 Cadaques, Release 2015-03

194 Chapter 11. Networking

Qt5 Cadaques, Release 2015-03

WS Client

On the client side we need a list view to display the messages and a TextInput for the user to enter a new chat
message.

We will use a label with white color in the example.

// Label.qml
import QtQuick 2.5

Text {
color: '#fff'
horizontalAlignment: Text.AlignLeft
verticalAlignment: Text.AlignVCenter

}

Our chat view is a list view, where the text is appended to a list model. Each entry is displayed using a row of
prefix and message label. We use a cell width cw factor to split the with into 24 columns.

// ChatView.qml
import QtQuick 2.5

ListView {
id: root
width: 100
height: 62

model: ListModel {}

function append(prefix, message) {
model.append({prefix: prefix, message: message})

}

delegate: Row {
width: root.width
height: 18
property real cw: width/24
Label {

width: cw*1
height: parent.height
text: model.prefix

}
Label {

width: cw*23
height: parent.height
text: model.message

}
}

}

The chat input is just a simple text input wrapped with a colored border.

// ChatInput.qml
import QtQuick 2.5

FocusScope {
id: root
width: 240
height: 32
Rectangle {

anchors.fill: parent
color: '#000'
border.color: '#fff'

11.8. Web Sockets 195

Qt5 Cadaques, Release 2015-03

border.width: 2
}

property alias text: input.text

signal accepted(string text)

TextInput {
id: input
anchors.left: parent.left
anchors.right: parent.right
anchors.verticalCenter: parent.verticalCenter
anchors.leftMargin: 4
anchors.rightMargin: 4
onAccepted: root.accepted(text)
color: '#fff'
focus: true

}
}

When the web socket receives a message it appends the message to the chat view. Same applies for a status change.
Also when the user enters a chat message a copy is appended to the chat view on the client side and the message
is send to the server.

// ws_client.qml
import QtQuick 2.5
import Qt.WebSockets 1.0

Rectangle {
width: 360
height: 360
color: '#000'

ChatView {
id: box
anchors.left: parent.left
anchors.right: parent.right
anchors.top: parent.top
anchors.bottom: input.top

}
ChatInput {

id: input
anchors.left: parent.left
anchors.right: parent.right
anchors.bottom: parent.bottom
focus: true
onAccepted: {

print('send message: ' + text)
socket.sendTextMessage(text)
box.append('>', text)
text = ''

}
}
WebSocket {

id: socket

url: "ws://localhost:3000"
active: true
onTextMessageReceived: {

box.append('<', message)
}
onStatusChanged: {

196 Chapter 11. Networking

Qt5 Cadaques, Release 2015-03

if (socket.status == WebSocket.Error) {
box.append('#', 'socket error ' + socket.errorString)

} else if (socket.status == WebSocket.Open) {
box.append('#', 'socket open')

} else if (socket.status == WebSocket.Closed) {
box.append('#', 'socket closed')

}
}

}
}

You need first run the server and then the client. There is no retry connection mechanism in our simple client.

Running the server

$ cd ws_server
$ node server.js

Running the client

$ cd ws_client
$ qmlscene ws_client.qml

When entering text and pressing enter you should see something like this.

Summary

This concludes our chapter about QML networking. Please bear in mind Qt has on the native side a much richer
networking API as on the QML side currently. But the idea of the chapter is to push the boundaries of QML
networking and how to integrate with cloud based services.

11.9. Summary 197

Qt5 Cadaques, Release 2015-03

198 Chapter 11. Networking

CHAPTER 12

Storage

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

This chapter will cover storing data using Qt Quick in Qt 5. Qt Quick offers only limited ways of storing local data
directly. In this sense it acts more like a browser. In many projects storing data is handled by the C++ backend and
the required functionality is exported to the Qt Quick frontend side. Qt Quick does not provide you with access
to the host file system to read and write files as you are used from the Qt C++ side. So it would be the task of
the backend engineer to write such a plugin or maybe use a network channel to communicate with a local server,
which provides these capabilities.

Every application need to store smaller and larger information persistently. This can be done locally on the file
system or remote on a server. Some information will be structured and simple (e.g. settings), some will be large
and complicated for example documentation files and some will be large and structured and will require some sort
of database connection. Here we will mainly cover the built in capabilities of Qt Quick to store data as also the
networked ways.

Settings

Qt comes on its native side with the C++ QSettings class, which allows you to store the application settings
(aka options, preferences) in a system dependent way. It uses the infrastructure available from your OS. Additional
it supports a common INI file format for handling cross platform settings files.

In Qt 5.2 Settings have entered the QML world. The API is still in the labs module, which means the API may
break in the future. So be aware.

Here is a small example, which applies a color value to a base rectangle. Every time the user clicks on the window
a new random color is generated. When the application is closed and relaunched again you should see your last
color. The default color should be the color initially set on the root rectangle.

import QtQuick 2.5
import Qt.labs.settings 1.0

Rectangle {
id: root
width: 320; height: 240
color: '#000000'
Settings {

id: settings
property alias color: root.color

}
MouseArea {

199

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

anchors.fill: parent
onClicked: root.color = Qt.hsla(Math.random(), 0.5, 0.5, 1.0);

}
}

The settings value are stored every time the value changes. This might be not always what you want. To store the
settings only when required you can use standard properties.

Rectangle {
id: root
color: settings.color
Settings {

id: settings
property color color: '#000000'

}
function storeSettings() { // executed maybe on destruction

settings.color = root.color
}

}

It is also possible to store settings into different categories using the category property.

Settings {
category: 'window'
property alias x: window.x
property alias y: window.x
property alias width: window.width
property alias height: window.height

}

The settings are stored according your application name, organization and domain. This information is normally
set in the main function of your c++ code.

int main(int argc, char** argv) {
...
QCoreApplication::setApplicationName("Awesome Application");
QCoreApplication::setOrganizationName("Awesome Company");
QCoreApplication::setOrganizationDomain("org.awesome");
...

}

Local Storage - SQL

Qt Quick supports an local storage API known from the web browsers the local storage API. the API is available
under “import QtQuick.LocalStorage 2.0”.

In general it stores the content into a SQLITE database in system specific location in an unique ID based file based
on the given database name and version. It is not possible to list or delete existing databases. You can find the
storage location from QQmlEngine::offlineStoragePath().

You use the API by first creating a database object and then creating transactions on the database. Each transaction
can contain one or more SQL queries. The transaction will roll-back when a SQL query will fail inside the
transaction.

For example to read from a simple notes table with a text column you could use the local storage like this:

import QtQuick 2.5
import QtQuick.LocalStorage 2.0

Item {

200 Chapter 12. Storage

Qt5 Cadaques, Release 2015-03

Component.onCompleted: {
var db = LocalStorage.openDatabaseSync("MyExample", "1.0", "Example

→˓database", 10000);
db.transaction(function(tx) {

var result = tx.executeSql('select * from notes');
for(var i = 0; i < result.rows.length; i++) {

print(result.rows[i].text);
}

}
});

}
}

Crazy Rectangle

As an example assume we would like to store the position of a rectangle on our scene.

Here our base example.

12.2. Local Storage - SQL 201

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5

Item {
width: 400
height: 400

Rectangle {
id: crazy
objectName: 'crazy'
width: 100
height: 100
x: 50
y: 50
color: "#53d769"
border.color: Qt.lighter(color, 1.1)
Text {

anchors.centerIn: parent
text: Math.round(parent.x) + '/' + Math.round(parent.y)

}
MouseArea {

anchors.fill: parent
drag.target: parent

}
}

}

You can drag the rectangle freely around. When you close the application and launch it again the rectangle is at
the same position.

Now we would like to add that the x/y position of the rectangle is stored inside the SQL DB. For this we need to
add an init, read and store database function. These function are called when on component completed and
on component destruction.

import QtQuick 2.5
import QtQuick.LocalStorage 2.0

Item {
// reference to the database object
property var db;

function initDatabase() {
// initialize the database object

}

function storeData() {
// stores data to DB

}

function readData() {
// reads and applies data from DB

}

Component.onCompleted: {
initDatabase();
readData();

}

Component.onDestruction: {
storeData();

}
}

202 Chapter 12. Storage

Qt5 Cadaques, Release 2015-03

You could also extract the DB code in an own JS library, which does all the logic. This would be the preferred
way if the logic gets more complicated.

In the database initialization function we create the DB object and ensure the SQL table is created.

function initDatabase() {
print('initDatabase()')
db = LocalStorage.openDatabaseSync("CrazyBox", "1.0", "A box who remembers its

→˓position", 100000);
db.transaction(function(tx) {

print('... create table')
tx.executeSql('CREATE TABLE IF NOT EXISTS data(name TEXT, value TEXT)');

});
}

The application next calls the read function to read existing data back from the database. Here we need to differ-
entiate if there is already data in the table. To check we look into how many rows the select clause has returned.

function readData() {
print('readData()')
if(!db) { return; }
db.transaction(function(tx) {

print('... read crazy object')
var result = tx.executeSql('select * from data where name="crazy"');
if(result.rows.length === 1) {

print('... update crazy geometry')
// get the value column
var value = result.rows[0].value;
// convert to JS object
var obj = JSON.parse(value)
// apply to object
crazy.x = obj.x;
crazy.y = obj.y;

}
});

}

We expect the data is stored a JSON string inside the value column. This is not typical SQL like, but works nicely
with JS code. So instead of storing the x,y as properties in the table we store them as a complete JS object using
the JSON stringify/parse methods. At the end we get a valid JS object with x and y properties, which we can apply
on our crazy rectangle.

To store the data, we need to differentiate the update and insert cases. We use update when a record already exists
and insert if no record under the name “crazy” exists.

function storeData() {
print('storeData()')
if(!db) { return; }
db.transaction(function(tx) {

print('... check if a crazy object exists')
var result = tx.executeSql('SELECT * from data where name = "crazy"');
// prepare object to be stored as JSON
var obj = { x: crazy.x, y: crazy.y };
if(result.rows.length === 1) {// use update

print('... crazy exists, update it')
result = tx.executeSql('UPDATE data set value=? where name="crazy"',

→˓[JSON.stringify(obj)]);
} else { // use insert

print('... crazy does not exists, create it')
result = tx.executeSql('INSERT INTO data VALUES (?,?)', ['crazy', JSON.

→˓stringify(obj)]);
}

});

12.2. Local Storage - SQL 203

Qt5 Cadaques, Release 2015-03

}

Instead of selecting the whole record set we could also use the SQLITE count function like this: SELECT
COUNT(*) from data where name = "crazy" which would return use one row with the amount of
rows affected by the select query. Otherwise this is common SQL code. As an additional feature, we use the SQL
value binding using the ? in the query.

Now you can drag the rectangle and when you quit the application the database stores the x/y position and applies
it on the next application run.

Other Storage APIs

To store directly from within QML these are the major storage types. The real strength of Qt Quick comes from
the fact to extend it with C++ to interface with your native storage systems or use the network API to interface
with a remote storage system, like the Qt cloud.

204 Chapter 12. Storage

CHAPTER 13

Dynamic QML

Section author: e8johan

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Until now, we have treated QML as a tool for constructing a static set of scenes and navigating between them.
Depending on various states and logic rules, a live and dynamic user interface is constructed. By working with
QML and JavaScript in a more dynamic manner, the flexibility and possibilities expand even further. Components
can be loaded and instantiated at run-time, elements can be destroyed. Dynamically created user interfaces can be
saved to disk and later restored.

Loading Components Dynamically

The easiest way to dynamically load different parts of QML is to use the Loader element. It serves as a place-
holder to the item that is being loaded. The item to load is controlled through either the source property or
the sourceComponent property. The former loads the item from a given URL, while the latter instantiates a
component.

As the loader serves as a placeholder for the item being loaded, its size depends on the size of the item, and vise
versa. If the Loader element has a size, either by having set width and height or through anchoring, the
loaded item will be given the loader’s size. If the Loader has no size, it is resized in accordance to the size of the
item being loaded.

The example described below demonstrates how two separate user interface parts can be loaded into the same
space using a Loader element. The idea is to have a speed dial that can be either digital or analog, as shown in
the illustration below. The code surrounding the dial is unaffected by which item that is loaded for the moment.

205

https://bitbucket.org/e8johan

Qt5 Cadaques, Release 2015-03

The first step in the application is to declare a Loader element. Notice that the source property is left out. This
is because the source depends on which state the user interface is in.

Loader {
id: dialLoader

anchors.fill: parent
}

In the states property of the parent of dialLoader a set of PropertyChanges elements drives the loading
of different QML files depending on the state. The source property happens to be a relative file path in this
example, but it can just as well be a full URL, fetching the item over the web.

states: [
State {

name: "analog"
PropertyChanges { target: analogButton; color: "green"; }
PropertyChanges { target: dialLoader; source: "Analog.qml"; }

},
State {

name: "digital"
PropertyChanges { target: digitalButton; color: "green"; }
PropertyChanges { target: dialLoader; source: "Digital.qml"; }

}
]

In order to make the loaded item come alive, its speed property must be bound to the root speed property. This
cannot be done as a direct binding as the item not always is loaded and changes over time. Instead a Binding
element must be used. The target property of the binding is changed every time the Loader triggers the
onLoaded signal.

Loader {
id: dialLoader

anchors.left: parent.left
anchors.right: parent.right
anchors.top: parent.top
anchors.bottom: analogButton.top

onLoaded: {
binder.target = dialLoader.item;

}
}
Binding {

id: binder

property: "speed"

206 Chapter 13. Dynamic QML

Qt5 Cadaques, Release 2015-03

value: speed
}

The onLoaded signal lets the loading QML act when the item has been loaded. In a similar fashion, the QML
being loaded can rely on the Component.onCompleted signal. This is signal actually available for all com-
ponents, regardless how they are loaded. For instance, the root component of an entire application can us it to
kick-start itself when the entire user interface has been loaded.

Connecting Indirectly

When creating QML elements dynamically, you cannot connect to signals using the onSignalName approach
used for static setup. Instead, the Connections element must be used. It connects to any number of signals of
a target element.

Having set the target property of a Connections element, the signals can be connected as usual, that is,
using the onSignalName approach. However, by altering the target property, different elements can be
monitored at different times.

In the example show above, a user interface consisting of two clickable areas is presented to the user. When
either area is clicked, it is flashed using an animation. The left area is shown in the code snippet below. In the
MouseArea, the leftClickedAnimation is triggered, causing the area to flash.

Rectangle {
id: leftRectangle

width: 290
height: 200

color: "green"

MouseArea {
id: leftMouseArea
anchors.fill: parent
onClicked: leftClickedAnimation.start();

}

Text {
anchors.centerIn: parent
font.pixelSize: 30
color: "white"
text: "Click me!"

}
}

13.1. Loading Components Dynamically 207

Qt5 Cadaques, Release 2015-03

In addition to the two clickable areas, a Connections element is used. This triggers a third animation when the
active, i.e. the target of the element, is clicked.

Connections {
id: connections
onClicked: activeClickedAnimation.start();

}

To determine which MouseArea to target, two states are defined. Notice that we cannot set the target
property using a PropertyChanges element, as it already contains a target property. Instead a
StateChangeScript is utilized.

states: [
State {

name: "left"
StateChangeScript {

script: connections.target = leftMouseArea
}

},
State {

name: "right"
StateChangeScript {

script: connections.target = rightMouseArea
}

}
]

When trying out the example, it is worth noticing that when multiple signal handlers are used, all are invoked. The
execution order of these is, however, undefined.

When creating a Connections element without setting the target property, the property defaults to parent.
This means that it explicitly has to be set to null to avoid catching signals from the parent until the target is
set. This behavior does make it possible to create custom signal handler components based on a Connections
element. This way, the code reacting to the signals can be encapsulated and re-used.

In the example below, the Flasher component can be put inside any MouseArea. When clicked, it triggers an
animation, causing the parent to flash. In the same MouseArea the actual task being triggered can also be carried
out. This separates the standardized user feedback, i.e. the flashing, from the actual action.

import QtQuick 2.5

Connections {
onClicked: {

// Automatically targets the parent
}

}

To use the Flasher, simply instantiate a Flasher within each MouseArea, and it all works.

import QtQuick 2.5

Item {
// A background flasher that flashes the background of any parent MouseArea

}

When using a Connections element to monitor the signals of multiple types of target elements,
you sometimes find yourself in a situation where the available signals vary between the targets. This re-
sults in the Connections element outputting run-time errors as signals are missed. To avoid this, the
ignoreUnknownSignal property can be set to true. This ignores all such errors.

Note: It is usually a bad idea to supress error messages.

208 Chapter 13. Dynamic QML

Qt5 Cadaques, Release 2015-03

Binding Indirectly

Just as it is not possible to connect to signals of dynamically created elements directly, nor it is possible to bind
properties of a dynamically created element without working with a bridge element. To bind a property of any
element, including dynamically created elements, the Binding element is used.

The Binding element lets you specify a target element, a property to bind and a value to bind it to.
Through using a Binding‘ element, it is, for instance, possible to bind properties of a dynamically loaded element.
This was demonstrated in the introductory example in this chapter, as shown below.

Loader {
id: dialLoader

anchors.left: parent.left
anchors.right: parent.right
anchors.top: parent.top
anchors.bottom: analogButton.top

onLoaded: {
binder.target = dialLoader.item;

}
}
Binding {

id: binder

property: "speed"
value: speed

}

As the target element of a Binding not always is set, and perhaps not always has a given property, the when
property of the Binding element can be used to limit the time when the binding is active. For instance, it can be
limited to specific modes in the user interface.

Creating and Destroying Objects

The Loader element makes it possible to populate part of a user interface dynamically. However, the overall
structure of the interface is still static. Through JavaScript it is possible to take one more step and to instantiate
QML elements completely dynamically.

Before we dive into the details of creating elements dynamically, we need to understand the workflow. When
loading a piece of QML from a file or even over the Internet, a component is created. The component encapsulates
the interpreted QML code and can be used to create items. This means that loading a piece of QML code and
instantiating items from it is a two stage process. First the QML code is parsed into a component. Then the
component is used to instantiate actual item objects.

In addition to creating elements from QML code stored in files or on servers, it is also possible to create QML
objects directly from text strings containing QML code. The dynamically created items are then treated in a similar
fashion once instantiated.

Dynamically Loading and Instantiating Items

When loading a piece of QML, it is first interpreted into a component. This includes loading dependencies and
validating the code. The location of the QML being loaded can be either a local file, a Qt resource, or even a
distance network location specified by a URL. This means that the loading time can be everything from instant,
for instance a Qt resource located in RAM without any non-loaded dependencies, to very long, meaning a piece
of code located on a slow server with multiple dependencies that needs to be loaded.

The status of a component being created can be tracked by its status property. The available values are
Component.Null, Component.Loading, Component.Ready and Component.Error. The Null

13.2. Creating and Destroying Objects 209

Qt5 Cadaques, Release 2015-03

to Loading to Ready is the usual flow. At any stage the status can change to Error. In that case, the
component cannot be used to create new object instances. The Component.errorString() function can be
used to retrieve a user readable error description.

When loading components over slow connections, the progress property can be of use. It ranges from 0.0,
meaning nothing has been loaded, to 1.0 indicating that all has been loaded. When the component’s status
changes to Ready, the component can be used to instantiate objects. The code below demonstrates how that can
be achieved, taking into account the event of the component becoming ready or failing to be created directly, as
well as the case where to component is ready slightly later.

var component;

function createImageObject() {
component = Qt.createComponent("dynamic-image.qml");
if (component.status === Component.Ready || component.status === Component.

→˓Error) {
finishCreation();

} else {
component.statusChanged.connect(finishCreation);

}
}

function finishCreation() {
if (component.status === Component.Ready) {

var image = component.createObject(root, {"x": 100, "y": 100});
if (image === null) {

console.log("Error creating image");
}

} else if (component.status === Component.Error) {
console.log("Error loading component:", component.errorString());

}
}

The code above is kept in a separate JavaScript source file, referenced from the main QML file.

import QtQuick 2.5
import "create-component.js" as ImageCreator

Item {
id: root

width: 1024
height: 600

Component.onCompleted: ImageCreator.createImageObject();
}

The createObject function of a component is used to create object instances, as shown above. This not
only applies to dynamically loaded components, but also Component elements inlined in the QML code. The
resulting object can be used in the QML scene like any other object. The only difference is that it does not have
an id.

The createObject function takes two arguments. The first is a parent object of the type Item. The second
is a list of properties and values on the format {"name": value,"name": value}. This is demonstrated
in the example below. Notice that the properties argument is optional.

var image = component.createObject(root, {"x": 100, "y": 100});

Note: A dynamically created component instance is not different to an in-line Component element. The in-line
Component element also provides functions to instantiate objects dynamically.

210 Chapter 13. Dynamic QML

Qt5 Cadaques, Release 2015-03

Dynamically Instantiating Items from Text

Sometimes, it is convenient to be able to instantiate an object from a text string of QML. If nothing else, it is
quicker than putting the code in a separate source file. For this, the Qt.createQmlObject function is used.

qThe function takes three arguments: qml, parent and filepath. The qml argument contains the string
of QML code to instantiate. The parent argument provides a parent object to the newly created object. The
filepath argument is used when reporting any errors from the creation of the object. The result returned from
the function is either a new object, or null.

Warning: The createQmlObject function always returns immediately. For the function to succeed, all
the dependencies of the call must be loaded. This means that if the code passed to the function refers to a
non-loaded component, the call will fail and return null. To better handle this, the createComponent /
createObject approach must be used.

The objects created using the Qt.createQmlObject function resembles any other dynamically created object.
That means that it is identical to every other QML object, apart from not having an id. In the example below, a
new Rectangle element is instantiated from in-line QML code when the root element has been created.

import QtQuick 2.5

Item {
id: root

width: 1024
height: 600

function createItem() {
Qt.createQmlObject("import QtQuick 2.5; Rectangle { x: 100; y: 100; width:

→˓100; height: 100; color: \"blue\" }", root, "dynamicItem");
}

Component.onCompleted: root.createItem();
}

Managing Dynamically Created Elements

Dynamically created objects can be treated as any other object in a QML scene. However, there are some pitfalls
that needs to be handled. The most important is the concept of creation contexts.

The creation context of a dynamically created object is the context within it is being created. This is not necessarily
the same context as the parent exists in. When the creation context is destroyed, so is the bindings concerning the
object. This means that it is important to implement the creation of dynamic objects in a place in the code which
will be instantiated during the entire life-time of the objects.

Dynamically created objects can also be dynamically destroyed. When doing this, there is a rule of thumb: never
attempt to destroy an object that you have not created. This also includes elements that you have created, but not
using a dynamic mechanism such as Component.createObject or createQmlObject.

An object is destroyed by calling its destroy function. The function takes an optional argument which is an
integer specifying how many milliseconds the objects shall exist before being destroyed. This is useful to, for
instance, let the object complete a final transition.

item = Qt.createQmlObject(...);
...
item.destroy();

13.2. Creating and Destroying Objects 211

Qt5 Cadaques, Release 2015-03

Note: It is possible to destroy on object from within, making it possible to create self-destroying popup windows
for instance.

Tracking Dynamic Objects

Working with dynamic objects, it is often necessary to track the created objects. Another common feature is to be
able to store and restore the state of the dynamic objects. Both these tasks are easily handled using a ListModel
that we populate dynamically.

In the example shown below two types of elements, rockets and ufos, can be created and moved around by the
user. In order to be able to manipulate the entire scene of dynamically created elements, we use a model to track
the items.

Todo

illustration

The model, a ListModel, is populated as the items are created. The object reference is tracked along side the
source URL used when instantiating it. The latter is not strictly needed for tracking the objects, but will come in
handy later.

import QtQuick 2.5
import "create-object.js" as CreateObject

Item {
id: root

ListModel {
id: objectsModel

}

function addUfo() {
CreateObject.create("ufo.qml", root, itemAdded);

}

function addRocket() {
CreateObject.create("rocket.qml", root, itemAdded);

}

function itemAdded(obj, source) {
objectsModel.append({"obj": obj, "source": source})

}

As you can tell from the example above, the create-object.js is a more generalized form of the JavaScript
introduced earlier. The create method uses three arguments: a source URL, a root element and a callback to
invoke when finished. The callback gets called with two arguments: a reference to the newly created object and
the source URL used.

This means that each time addUfo or addRocket functions are called, the itemAdded function will be
called when the new object has been created. The latter will append the object reference and source URL to the
objectsModel model.

The objectsModel can be used in many ways. In the example in question, the clearItems function relies
on it. This function demonstrates two things. First, how to iterate over the model and perform a task, i.e. calling
the destroy function for each item to remove it. Secondly, it highlights the fact that the model is not updated as
objects are destroyed. Instead of removing the model item connected to the object in question, the obj property

212 Chapter 13. Dynamic QML

Qt5 Cadaques, Release 2015-03

of that model item is set to null. To remedy this, the code explicitly has to clear the model item as the objects
are removed.

function clearItems() {
while(objectsModel.count > 0) {

objectsModel.get(0).obj.destroy();
objectsModel.remove(0);

}
}

Having a model representing all dynamically created items, it is easy to create a function that serializes the items.
In the example code, the serialized information consists of the source URL of each object along its x and y
properties. These are the properties that can be altered by the user. The information is used to build an XML
document string.

function serialize() {
var res = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<scene>\n";

for(var ii=0; ii < objectsModel.count; ++ii) {
var i = objectsModel.get(ii);
res += " <item>\n <source>" + i.source + "</source>\n <x>" + i.

→˓obj.x + "</x>\n <y>" + i.obj.y + "</y>\n </item>\n"
}

res += "</scene>";

return res;
}

The XML document string can be used with a XmlListModel by setting the xml property of the model. In
the code below, the model is shown along the deserialize function. The deserialize function kickstarts
the deserialization by setting the dsIndex to refer to the first item of the model and then invoking the creation
of that item. The callback, dsItemAdded then sets that x and y properties of the newly created object. It then
updates the index and creates the nexts object, if any.

XmlListModel {
id: xmlModel
query: "/scene/item"
XmlRole { name: "source"; query: "source/string()" }
XmlRole { name: "x"; query: "x/string()" }
XmlRole { name: "y"; query: "y/string()" }

}

function deserialize() {
dsIndex = 0;
CreateObject.create(xmlModel.get(dsIndex).source, root, dsItemAdded);

}

function dsItemAdded(obj, source) {
itemAdded(obj, source);
obj.x = xmlModel.get(dsIndex).x;
obj.y = xmlModel.get(dsIndex).y;

dsIndex ++;

if (dsIndex < xmlModel.count)
CreateObject.create(xmlModel.get(dsIndex).source, root, dsItemAdded);

}

property int dsIndex

The example demonstrates how a model can be used to track created items, and how easy it is to serialize and
deserialize such information. This can be used to store a dynamically populated scene such as a set of widgets. In

13.3. Tracking Dynamic Objects 213

Qt5 Cadaques, Release 2015-03

the example, a model was used to track each item.

An alterante solution would be to use the children property of the root of a scene to track items. This, however,
requres the items themselves to know the source URL to use to re-create them. It also requires the scene to consist
only of dynamically created items, to avoid attempting to serialize and later deserialize any statically allocated
objects.

Summary

In this chapter we have looked at creating QML elements dynamically. This lets us create QML scenes freely,
opening the door for user configurability and plug-in based architectures.

The easiest way to dynamically load a QML element is to use a Loader element. This acts as a placeholder for
the contents being loaded.

For a more dynamic approach, the Qt.createQmlObject function can be used to instantiate a string of QML.
This approach does, however, have limitations. The full blown solution is to dynamically create a Component
using the Qt.createComponent function. Objects are then created by calling the createObject function
of a Component.

As bindings and signal connections rely on the existence of an object id, or access to the object instantiation, an
alternate approach must be used for dynamically created objects. To create a binding, the Binding element is
used. The Connections element makes it possible to connect to signals of a dynamically created object.

One of the challenges of working with dynamically created items is to keep track of them. This can be done using
a ListModel. By having a model tracking the dynamically created items, it is possible to implement functions
for serialization and deserialization, making it possible to store and restore dynamically created scenes.

214 Chapter 13. Dynamic QML

CHAPTER 14

JavaScript

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

JavaScript is the lingua-franca on web client development. It also starts to get traction on web server development
mainly by node js. As such it is a well suited addition as an imperative language onto the side of declarative QML
language. QML itself as a declarative language is used to express the user interface hierachy but is limited to
express operational code. Sometimes you need a way to express operations, here JavaScript comes into play.

Note: There is an open question in the Qt community about the right mixture about QML/JS/QtC++ in a modern
Qt application. The commonly agreed recommended mixture is to limit the JS part of your application to a
minimum and do your business logic inside QtC++ and the UI logic inside QML/JS.

This book pushes the boundaries, which is not always the right mix for a product development and not for every-
one. It is important to follow your team skills and your personal taste. In doubt follow the recommendation.

Here a short example how JS looks like, mixtured in QML:

Button {
width: 200
height: 300
property bool checked: false
text: "Click to toggle"

// JS function
function doToggle() {
checked = !checked

}

onTriggered: {
// this is also JavaScript
doToggle();
console.log('checked: ' + checked)

}
}

So JavaScript can come in many places inside QML as a standalone JS function, as a JS module and it can be on
every right side of a property binding.

import "util.js" as Util // import a pure JS module

Button {

215

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

width: 200
height: width*2 // JS on the right side of property binding

// standalone function (not really useful)
function log(msg) {
console.log("Button> " + msg);

}

onTriggered: {
// this is JavaScript
log();
Qt.quit();

}
}

Within QML you declare the user interface, with JavaScript you make it functional. So how much JavaScript
should you write? It depends on your style and how familar you are with JS development. JS is a loosely typed
language, which makes it difficult to spot type defects. Also functions expect all argument variations, which can
be a very nasty bug to spot. The way to spot defects is rigorous unit testing or acceptance testing. So if you develop
real logic (not some glue lines of code) in JS you should really start using the test-first approach. In general mixed
teams (Qt/C++ and QML/JS) are very successfull when they minimize the amount of JS in the frontend as the
domain logic and do the heavy lifting in Qt C++ in the backend. The backend should then be rigorous unit tested
so that the frontend developers can trust the code and focus on all these little user interface requirements.

Note: In general: backend developers are functional driven and frontend developers are user story driven.

Browser/HTML vs QtQuick/QML

The browser is the runtime to render HTML and execute the Javascript associated with the HTML. Nowadays
modern web applications contain much more JavaScript then HTML. The Javascript inside the browser is a stan-
dard ECMAScript environment with some browser additions. A typical JS environment inside the browser knows
the window object to access the browser window. There are also the basic DOM selectors which are used by
jQuery to provide the CSS selectors. Additional there is a setTimeout function to call a function after a certain
time. Besides these the environment is a standard JavaScript environment similar to QML/JS.

What is also different is where JS can appear inside HTML and QML. In HTML you can only add JS on event
handlers (e.g. page loaded, mouse pressed). For example your JS initializes normally on page load, which is
comparable to Component.onCompleted in QML. For example you can not use JS for property bindings (at
least not directly, AngularJS enhances the DOM tree to allow these, but this is far away from standard HTML).

So in QML JS is much more a first-class citizen and much deeper integrated into the QML render tree. Which
makes the syntax much more readable. Besides this people which have developed HTML/JS applications will feel
at home inside QML/JS.

The Language

This chapter will not give you a general introducton to JavaScript. There are other books out there for for a general
introduction to JavaScript, please visit this great side on Mozilla Developer Network.

On the surface JavaScript is a very common language and does not differ a lot from other languages:

function countDown() {
for(var i=0; i<10; i++) {
console.log('index: ' + i)

}
}

216 Chapter 14. JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript

Qt5 Cadaques, Release 2015-03

function countDown2() {
var i=10;
while(i>0) {
i--;

}
}

But be warned JS has function scope and not block scope as in C++ (see Functions and function scope).

The statements if ... else, break, continue also work as expected. The switch case can also compare
other types and not just integer values:

function getAge(name) {
// switch over a string
switch(name) {
case "father":
return 58;

case "mother":
return 56;

}
return unknown;

}

JS knows several values which can be false, e.g. false, 0, "", undefined, null). For example a function
returns by default undefined. To test for false use the === identity operator. The == equality operator will do
type conversion to test for equality. If possible use the faster and better === strict equality operator which will
test for identity (see Comparison operators.

Under the hood javascript has its own ways of doing things. For example arrays:

function doIt() {
var a = [] // empty arrays
a.push(10) // addend number on arrays
a.push("Monkey") // append string on arrays
console.log(a.length) // prints 2
a[0] // returns 10
a[1] // returns Monkey
a[2] // returns undefined
a[99] = "String" // a valid assignment
console.log(a.length) // prints 100
a[98] // contains the value undefined

}

Also for people coming from C++ or Java which are used to a OO language JS just works different. JS is not
purely an OO language it is a so called prototype based language. Each object has a prototype object. An object
is created based on his prototype object. Please read more about this in the book Javascript the Good Parts by
Douglas Crockford or watch the video below.

To test some small JS snippets you can use the online JS Console or just build a little piece of QML code:

import QtQuick 2.5

Item {
function runJS() {
console.log("Your JS code goes here");

}
Component.onCompleted: {
runJS();

}
}

14.2. The Language 217

https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Functions_and_function_scope
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
http://javascript.crockford.com
http://javascript.crockford.com
http://jsconsole.com

Qt5 Cadaques, Release 2015-03

JS Objects

While working with JS there are some objects and methods which are more frequently used. This is a small
collection of them.

• Math.floor(v), Math.ceil(v), Math.round(v) - largest, smallest, rounded integer from float

• Math.random() - create a random number between 0 and 1

• Object.keys(o) - get keys from object (including QObject)

• JSON.parse(s), JSON.stringify(o) - conversion between JS object and JSON string

• Number.toFixed(p) - fixed precision float

• Date - Date manipulation

You can find them also at: JavaScript reference

Here some small and limited examples how to use JS with QML. They should give you an idea how you can use
JS inside QML

Print all keys from QML Item

Item {
id: root
Component.onCompleted: {
var keys = Object.keys(root);
for(var i=0; i<keys.length; i++) {

var key = keys[i];
// prints all properties, signals, functions from object
console.log(key + ' : ' + root[key]);

}
}

}

Parse an object to a JSON string and back

Item {
property var obj: {
key: 'value'

}

Component.onCompleted: {
var data = JSON.stringify(obj);
console.log(data);
var obj = JSON.parse(data);
console.log(obj.key); // > 'value'

}
}

Current Date

Item {
Timer {
id: timeUpdater
interval: 100
running: true
repeat: true

218 Chapter 14. JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

Qt5 Cadaques, Release 2015-03

onTriggered: {
var d = new Date();
console.log(d.getSeconds());

}
}

}

Call a function by name

Item {
id: root

function doIt() {
console.log("doIt()")

}

Component.onCompleted: {
// Call using function execution
root["doIt"]();
var fn = root["doIt"];
// Call using JS call method (could pass in a custom this object and arguments)
fn.call()

}
}

Creating a JS Console

As a little example we will create a JS console. We need an input field where the user can enter his JS expressions
and ideally there should be a list of output results. As this should more look like a desktop application we use the
QtQuick Controls module.

Note: A JS console inside your next project can be really beneficial for testing. Enhanced with a Quake-Terminal
effect it is also good to impress customers. To use it wisely you need to control the scope the JS console evaluates
in, e.g. the current visible screen, the main data model, a singleton core object or all together.

We use Qt Creator to create a Qt Quick UI project using QtQuick controls. We call the project JSConsole. After
the wizard has finished we have already a basic structure for the application with an application window and a
menu to exit the application.

For the input we use a TextField and a Button to send the input for evaluation. The result of the expression
evaluation is displayed using a ListView with a ListModel as the model and two labels to display the expression
and the evaluated result.

// part of JSConsole.qml
ApplicationWindow {

id: root

...

ColumnLayout {
anchors.fill: parent
anchors.margins: 9
RowLayout {

Layout.fillWidth: true
TextField {

id: input

14.4. Creating a JS Console 219

Qt5 Cadaques, Release 2015-03

220 Chapter 14. JavaScript

Qt5 Cadaques, Release 2015-03

Layout.fillWidth: true
focus: true
onAccepted: {

// call our evaluation function on root
root.jsCall(input.text)

}
}
Button {

text: qsTr("Send")
onClicked: {

// call our evaluation function on root
root.jsCall(input.text)

}
}

}
Item {

Layout.fillWidth: true
Layout.fillHeight: true
Rectangle {

anchors.fill: parent
color: '#333'
border.color: Qt.darker(color)
opacity: 0.2
radius: 2

}

ScrollView {
id: scrollView
anchors.fill: parent
anchors.margins: 9
ListView {

id: resultView
model: ListModel {

id: outputModel
}
delegate: ColumnLayout {

width: ListView.view.width
Label {

Layout.fillWidth: true
color: 'green'
text: "> " + model.expression

}
Label {

Layout.fillWidth: true
color: 'blue'
text: "" + model.result

}
Rectangle {

height: 1
Layout.fillWidth: true
color: '#333'
opacity: 0.2

}
}

}
}

}
}

}

The evaluation function jsCall does the evaluation not by itself this has been moved to a JS module
(jsconsole.js) for clearer separation.

14.4. Creating a JS Console 221

Qt5 Cadaques, Release 2015-03

// part of JSConsole.qml

import "jsconsole.js" as Util

...

ApplicationWindow {
id: root

...

function jsCall(exp) {
var data = Util.call(exp);
// insert the result at the beginning of the list
outputModel.insert(0, data)

}
}

For safety we do not use the eval function from JS as this would allow the user to modify the local scope. We use
the Function constructor to create a JS function on runtime and pass in our scope as this variable. As the function
is created every time it does not act as a closure and stores its own scope, we need to use this.a = 10 to store
the value inside the this scope of the function. The this scope is set by the script to the scope variable.

// jsconsole.js
.pragma library

var scope = {
// our custom scope injected into our function evaluation

}

function call(msg) {
var exp = msg.toString();
console.log(exp)
var data = {

expression : msg
}
try {

var fun = new Function('return (' + exp + ');');
data.result = JSON.stringify(fun.call(scope), null, 2)
console.log('scope: ' + JSON.stringify(scope, null, 2) + 'result: ' +

→˓result)
} catch(e) {

console.log(e.toString())
data.error = e.toString();

}
return data;

}

The data return from the call function is a JS object with a result, expression and error property: data: {
expression: {},result: {},error: {} }. We can use this JS object directly inside the List-
Model and access it then from the delegate, e.g. model.expression gives us the input expression. For the
simplicity of the example we ignore the error result.

222 Chapter 14. JavaScript

CHAPTER 15

Qt and C++

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Qt is a C++ toolkit with an extension for QML and Javascript. There exists many language bindings for Qt, but as
Qt is developed in C++, the spirit of C++ can be found throughout the classes. In this section, we will look at Qt
from a C++ perspective to build a better understanding how to extend QML with native plugins developed using
C++. Through C++, it is possible to extend and control the execution environment provided to QML.

This chapter will, just as Qt, require the reader to have some basic knowledge of C++. Qt does not rely on
advanced C++ features, and I generally consider the Qt style of C++ to be very readable, so do not worry if you
feel that your C++ knowledge is shaky.

Approaching Qt from a C++ direction, you will find that Qt enriches C++ with a number of modern language fea-
tures enabled through making introspection data available. This is made possible through the use of the QObject
base class. Introspection data, or meta data, maintains information of the classes at run-time, something that ordi-
nary C++ does not do. This makes it possible to dynamically probe objects for information about such details as
their properties and available methods.

Qt uses this meta information to enable a very loosely bound callback concept using signals and slots. Each
signal can be connected to any number of slots or even other signals. When a signal is emitted from an object
instance, the connected slots are invoked. As the signal emitting object does not need to know anything about the
object owning the slot and vise versa, this mechanism is used to create very reusable components with very few
inter-component dependencies.

The introspection features are also used to create dynamic language bindings, making it possible to expose a C++
object instance to QML and making C++ functions callable from Javascript. Other bindings for Qt C++ exist and
besides the standard Javascript binding a popular one is the Python binding called PyQt.

In addition to this central concept, Qt makes it possible to develop cross platform applications using C++. Qt C++
provides a platform abstraction on the different operating systems, which allows the developer to concentrate on
the task at hand and not the details of how you open a file on different operating systems. This means you can
re-compile the same source code for Windows, OS X and Linux and Qt takes care of the different OS ways of
handling certain things. The end result are natively built applications with the look and feel of the target platform.
As the mobile is the new desktop, newer Qt versions can also target a number of mobile platforms using the same
source code, e.g. iOS, Android, Jolla, BlackBerry, Ubuntu Phone, Tizen.

When it comes to re-use, not only can source code be re-used but developer skills are also reusable. A team
knowing Qt can reach out to far more platforms then a team just focusing on a single platform specific technology
and as Qt is so flexible the team can create different system components using the same technology.

For all platform, Qt offers a set of basic types, e.g. strings with full unicode support, lists, vectors, buffers. It also
provides a common abstraction to the target platform’s main loop, and cross platform threading and networking
support. The general philosophy is that for an application developer Qt comes with all required functionality

223

https://github.com/jryannel
http://www.riverbankcomputing.co.uk/software/pyqt/intro

Qt5 Cadaques, Release 2015-03

included. For domain specific tasks such as to interface to your native libraries Qt comes with several helper
classes to make this easier.

A Boilerplate Application

The best way to understand Qt is to start from a small demonstration application. This application creates a simple
"Hello World!" string and writes it into a file using unicode characters.

#include <QCoreApplication>
#include <QString>
#include <QFile>
#include <QDir>
#include <QTextStream>
#include <QDebug>

int main(int argc, char *argv[])
{

QCoreApplication app(argc, argv);

// prepare the message
QString message("Hello World!");

// prepare a file in the users home directory named out.txt
QFile file(QDir::home().absoluteFilePath("out.txt"));
// try to open the file in write mode
if(!file.open(QIODevice::WriteOnly)) {

qWarning() << "Can not open file with write access";
return -1;

}
// as we handle text we need to use proper text codecs
QTextStream stream(&file);

224 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

// write message to file via the text stream
stream << message;

// do not start the eventloop as this would wait for external IO
// app.exec();

// no need to close file, closes automatically when scope ends
return 0;

}

The simple example demonstrates the use of file access and the correct way of writing text into a file using text
codecs via the text stream. For binary data there is a cross platform binary stream called QDataStream. The
different classes we use are included using their class name. Another possibility would be to use a module and class
name e.g. #include <QtCore/QFile>. For the lazy there is also the possibility to include a whole module
using #include <QtCore>. E.g. in QtCore you have the most common classes used for an application,
which are not UI dependent. Have a look at the QtCore class list or the QtCore overview.

You build the application using qmake and make. QMake reads a project file and generates a Makefile which
then can be called using make. The project file is platform independent and qmake has some rules to apply the
platform specific settings to the generated make file. The project can also contain platform scopes for platform
specific rules, which are required in some specific cases. Here is an example of a simple project file.

build an application
TEMPLATE = app

use the core module and do not use the gui module
QT += core
QT -= gui

name of the executable
TARGET = CoreApp

allow console output
CONFIG += console

for mac remove the application bundling
macx {

CONFIG -= app_bundle
}

sources to be build
SOURCES += main.cpp

We will not go into depth into this topic. Just remember Qt uses project files for projects and qmake generates the
platform specific make files from these project files.

The simple code example above just writes the text and exits the application. For a command line tool this is good
enough. For a user interface you would need an event loop which waits for user input and and somehow schedules
re-draw operations. So here follows the same example now uses a desktop button to trigger the writing.

Our main.cpp suprisingly got smaller. We moved code into an own class to be able to use signal/slots for the
user input, e.g. the button click. The signal/slot mechanism normally needs an object instance as you will see
shortly.

#include <QtCore>
#include <QtGui>
#include <QtWidgets>
#include "mainwindow.h"

int main(int argc, char** argv)
{

15.1. A Boilerplate Application 225

http://doc.qt.io/qt-5/qtcore-module.html
http://doc.qt.io/qt-5/qtcore-index.html

Qt5 Cadaques, Release 2015-03

QApplication app(argc, argv);

MainWindow win;
win.resize(320, 240);
win.setVisible(true);

return app.exec();
}

In the main function we simply create the application object and start the event loop using exec(). For now the
application sits in the event loop and waits for user input.

int main(int argc, char** argv)
{

QApplication app(argc, argv); // init application

// create the ui

return app.exec(); // execute event loop
}

Qt offers several UI technologies. For this example we use the Desktop Widgets user interface library using pure
Qt C++. We create a main window which will host a push button to trigger the functionality and also the main
window will host our core functionality which we know from the previous example.

The main window itself is a widget. It becomes a top level window as it does not have any parent. This comes
from how Qt sees a user interface as a tree of ui elements. In this case the main window is the root element, thus
becomes a window, while the push button a child of the main window and becomes a widget inside the window.

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QtWidgets>

class MainWindow : public QMainWindow
{

226 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

public:
MainWindow(QWidget* parent=0);
~MainWindow();

public slots:
void storeContent();

private:
QPushButton *m_button;

};

#endif // MAINWINDOW_H

Additionally we define a public slot called storeContent() which shall be called when the button is clicked.
A slot is a C++ method which is registered with the Qt meta object system and can be dynamically called.

#include "mainwindow.h"

MainWindow::MainWindow(QWidget *parent)
: QMainWindow(parent)

{
m_button = new QPushButton("Store Content", this);

setCentralWidget(m_button);
connect(m_button, &QPushButton::clicked, this, &MainWindow::storeContent);

}

MainWindow::~MainWindow()
{

}

void MainWindow::storeContent()
{

qDebug() << "... store content";
QString message("Hello World!");
QFile file(QDir::home().absoluteFilePath("out.txt"));
if(!file.open(QIODevice::WriteOnly)) {

qWarning() << "Can not open file with write access";
return;

}
QTextStream stream(&file);
stream << message;

}

In the main window we first create the push button and then register the signal clicked() with the
slot storeContent() using the connect method. Every time the signal clicked is emitted the slot
storeContent() is called. As simple as this, objects communicate via signal and slots with loose coupling.

The QObject

As described in the introduction, the QObject is what enables Qt’s introspection. It is the base class of almost
all classes in Qt. Exceptions are value types such as QColor, QString and QList.

A Qt object is a standard C++ object, but with more abilities. These can be divided into two groups: introspection
and memory management. The first means that a Qt object is aware of its class name, its relationship to other
classes, as well as its methods and properties. The memory management concept means that each Qt object can
be the parent of child objects. The parent owns the children, and when the parent is destroyed, it is responsible for
destroying its children.

The best way of understanding how the QObject abilities affect a class is to take a standard C++ class and Qt
enable it. The class shown below represents an ordinary such class.

15.2. The QObject 227

Qt5 Cadaques, Release 2015-03

The person class is a data class with a name and gender properties. The person class uses Qt’s object system to
add meta information to the c++ class. It allows users of a person object to connect to the slots and get notified
when the properties get changed.

class Person : public QObject
{

Q_OBJECT // enabled meta object abilities

// property declarations required for QML
Q_PROPERTY(QString name READ name WRITE setName NOTIFY nameChanged)
Q_PROPERTY(Gender gender READ gender WRITE setGender NOTIFY genderChanged)

// enables enum introspections
Q_ENUMS(Gender)

public:
// standard Qt constructor with parent for memory management
Person(QObject *parent = 0);

enum Gender { Unknown, Male, Female, Other };

QString name() const;
Gender gender() const;

public slots: // slots can be connected to signals
void setName(const QString &);
void setGender(Gender);

signals: // signals can be emitted
void nameChanged(const QString &name);
void genderChanged(Gender gender);

private:
// data members
QString m_name;
Gender m_gender;

};

The constructor passes the parent to the super class and initialize the members. Qt’s value classes are automatically
initialized. In this case QStringwill initialize to a null string (QString::isNull()) and the gender member
will explicitly initialize to the unknown gender.

Person::Person(QObject *parent)
: QObject(parent)
, m_gender(Person::Unknown)

{
}

The getter function is named after the property and is normally a simple const function. The setter emits the
changed signal when the property really has changed. For this we insert a guard to compare the current value with
the new value. And only when the value differs we assign it to the member variable and emit the changed signal.

QString Person::name() const
{

return m_name;
}

void Person::setName(const QString &name)
{

if (m_name != name) // guard
{

m_name = name;
emit nameChanged(m_name);

228 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

}
}

Having a class derived from QObject, we have gained more meta object abilities we can explore using the
metaObject() method. For example retrieving the class name from the object.

Person* person = new Person();
person->metaObject()->className(); // "Person"
Person::staticMetaObject.className(); // "Person"

There are many more features which can be accessed by the QObject base class and the meta object. Please
check out the QMetaObject documentation.

Build Systems

Building software reliably on different platforms can be a complex task. You will encounter different environments
with different compilers, paths, and library variations. The purpose of Qt is to shield the application developer
from these cross platform issues. For this Qt introduced the qmake build file generator. qmake operates on a
project file with the ending .pro. This project file contains instructions about the application and the sources to
be used. Running qmake on this project file will generate a Makefile for you on unix and mac and even under
windows if the mingw compiler toolchain is being used. Otherwise it may create a visual studio project or an
xcode project.

A typical build flow in Qt under unix would be:

$ edit myproject.pro
$ qmake // generates Makefile
$ make

Qt allows you also to use shadow builds. A shadow build is a build outside of your source code location. Assume
we have a myproject folder with a myproject.pro file. The flow would be like this:

$ mkdir build
$ cd build
$ qmake ../myproject/myproject.pro

We create a build folder and then call qmake from inside the build folder with the location of our project folder.
This will setup the make file in a way that all build artifacts are stored under the build folder instead of inside our
source code folder. This allows us to create builds for different qt versions and build configurations at the same
time and also it does not clutter our soruce code folder which is always a good thing.

When you are using Qt Creator it does these things behind the scenes for you and you do not have to worry about
these steps usually. For larger projects and for adeeper understanding of the flow, it is recommended that you learn
to build your qt project from the command line.

QMake

QMake is the tool which reads your project file and generates the build file. A project file is a simplified write
down of your project configuration, external dependencies, and your source files. The simplest project file is
probably this:

// myproject.pro

SOURCES += main.cpp

Here we build an exectuable application which will have the name myproject based on the project file name.
The build will only contain the main.cpp source file. And by default we will use the QtCore and QtGui module

15.3. Build Systems 229

Qt5 Cadaques, Release 2015-03

for this project. If our project were a QML application we would need to add the QtQuick and QtQml module to
the list:

// myproject.pro

QT += qml quick

SOURCES += main.cpp

Now the build file knows to link against the QtQml and QtQuick Qt modules. QMake use the concept of =, +=
and -= to assign, add, remove elements from a list of options, respectively. For a pure console build without UI
dependencies you would remove the QtGui module:

// myproject.pro

QT -= gui

SOURCES += main.cpp

When you want to build a library instead of an application, you need to change the build template:

// myproject.pro
TEMPLATE = lib

QT -= gui

HEADERS += utils.h
SOURCES += utils.cpp

Now the project will build as a library without UI dependencies and used the utils.h header and the
utils.cpp source file. The format of the library will depend on the OS you are building the project.

Often you wil have more complicated setups and need to build a set of projects. For this, qmake offers the
subdirs template. Assume we would have a mylib and a myapp project. Then our setup could be like this:

my.pro
mylib/mylib.pro
mylib/utils.h
mylib/utils.cpp
myapp/myapp.pro
myapp/main.cpp

We know already how the mylib.pro and myapp.pro would look like. The my.pro as the overarching project file
would look like this:

// my.pro
TEMPLATE = subdirs

subdirs = mylib \
myapp

myapp.depends = mylib

This declares a project with two subprojects: mylib and myapp, where myapp depends on mylib. When you
run qmake on this project file it will generate file a build file for each project in a corresponding folder. When you
run the make file for my.pro, all subprojects are also built.

Sometimes you need to do one thing on one platform and another thing on other platforms based on your config-
uration. For this qmake introduces the concept of scopes. A scope is applied when a configuration option is set to
true.

For example to use a unix specific utils implementation you could use:

230 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

unix {
SOURCES += utils_unix.cpp

} else {
SOURCES += utils.cpp

}

What it says is if the CONFIG variable contains a unix option then apply this scope otherwise use the else path.
A typical one is to remove the application bundling under mac:

macx {
CONFIG -= app_bundle

}

This will create your application as a plain executable under mac and not as a .app folder which is used for
application installation.

QMake based projects are normally the number one choice when you start programming Qt applications. There
are also other options out there. All have their benefits and drawbacks. We will shortly discuss these other options
next.

References

• QMake Manual - Table of contents of the qmake manual

• QMake Language - Value assignment, scopes and so like

• QMake Variables - Variables like TEMPLATE, CONFIG, QT are explained here

CMake

CMake is a tool create by Kitware. Kitware is very well known for their 3D visualitation software VTK and
also CMake, the cross platform makefile generator. It uses a series of CMakeLists.txt files to generate
platform specific make files. CMake is used by the KDE project and as such has a special relationship with the Qt
community.

The CMakeLists.txt is the file used to store the project configuration. For a simple hello world using QtCore
the project file would look like this:

// ensure cmake version is at least 3.0
cmake_minimum_required(VERSION 3.0)
// adds the source and build location to the include path
set(CMAKE_INCLUDE_CURRENT_DIR ON)
// Qt's MOC tool shall be automatically invoked
set(CMAKE_AUTOMOC ON)
// using the Qt5Core module
find_package(Qt5Core)
// create excutable helloworld using main.cpp
add_executable(helloworld main.cpp)
// helloworld links against Qt5Core
target_link_libraries(helloworld Qt5::Core)

This will build a helloworld executable using main.cpp and linked agains the external Qt5Core library. The build
file can be modified to be more generic:

// sets the PROJECT_NAME variable
project(helloworld)
cmake_minimum_required(VERSION 3.0)
set(CMAKE_INCLUDE_CURRENT_DIR ON)
set(CMAKE_AUTOMOC ON)
find_package(Qt5Core)

15.3. Build Systems 231

http://doc.qt.io/qt-5//qmake-manual.html
http://doc.qt.io/qt-5//qmake-language.html
http://doc.qt.io/qt-5//qmake-variable-reference.html

Qt5 Cadaques, Release 2015-03

// creates a SRC_LIST variable with main.cpp as single entry
set(SRC_LIST main.cpp)
// add an executable based on the project name and source list
add_executable(${PROJECT_NAME} ${SRC_LIST})
// links Qt5Core to the project executable
target_link_libraries(${PROJECT_NAME} Qt5::Core)

You can see that CMake is quite powerful. It takes some time to get used to the syntax. In general, it is said that
CMake is better suited for large and complex projects.

References

• CMake Help - available online but also as QtHelp format

• Running CMake

• KDE CMake Tutorial

• CMake Book

• CMake and Qt

Common Qt Classes

The QObject class forms the foundations of Qt, but there are many more classes in the framework. Before we
continue looking at QML and how to extend it, we will look at some basic Qt classes that are useful to know about.

The code examples shown in this section are written using the Qt Test library. It offers a great way to explore the
Qt API and store it for later reference. QVERIFY, QCOMPARE are functions provided by the test library to assert
a certain condition. We will use {} scopes to avoid name collisions. So do not get confused.

QString

In general, text handling in Qt is unicode based. For this you use the QString class. It comes with a variety of
great functions which you would expect from a modern framework. For 8-bit data you would use normally the
QByteArray class and for ASCII identifiers the QLatin1String to preserve memory. For a list of strings you
can use a QList<QString> or simply the QStringList class (which is derived from QList<QString>).

Here are some examples of how to use the QString class. QString can be created on the stack but it stores its
data on the heap. Also when assigning one string to another, the data will not be copied - only a reference to
the data. So this is really cheap and lets the developer concentrate on the code and not on the memory handling.
QString uses reference counters to know when the data can be safely deleted. This feature is called Implicit
Sharing and it is used in many Qt classes.

QString data("A,B,C,D"); // create a simple string
// split it into parts
QStringList list = data.split(",");
// create a new string out of the parts
QString out = list.join(",");
// verify both are the same
QVERIFY(data == out);
// change the first character to upper case
QVERIFY(QString("A") == out[0].toUpper());

Here we will show how to convert a number to a string and back. There are also conversion functions for float or
double and other types. Just look for the function in the Qt documentation used here and you will find the others.

232 Chapter 15. Qt and C++

http://www.cmake.org/documentation/
http://www.cmake.org/runningcmake/
https://techbase.kde.org/Development/Tutorials/CMake
http://www.kitware.com/products/books/CMakeBook.html
http://www.cmake.org/cmake/help/v3.0/manual/cmake-qt.7.html
http://doc.qt.io/qt-5//implicit-sharing.html
http://doc.qt.io/qt-5//implicit-sharing.html

Qt5 Cadaques, Release 2015-03

// create some variables
int v = 10;
int base = 10;
// convert an int to a string
QString a = QString::number(v, base);
// and back using and sets ok to true on success
bool ok(false);
int v2 = a.toInt(&ok, base);
// verify our results
QVERIFY(ok == true);
QVERIFY(v = v2);

Often in text you need to have parameterized text. One option could be to use QString("Hello" + name)
but a more flexible method is the arg marker approach. It preserves the order also during translation when the
order might change.

// create a name
QString name("Joe");
// get the day of the week as string
QString weekday = QDate::currentDate().toString("dddd");
// format a text using paramters (%1, %2)
QString hello = QString("Hello %1. Today is %2.").arg(name).arg(weekday);
// This worked on Monday. Promise!
if(Qt::Monday == QDate::currentDate().dayOfWeek()) {

QCOMPARE(QString("Hello Joe. Today is Monday."), hello);
} else {

QVERIFY(QString("Hello Joe. Today is Monday.") != hello);
}

Sometimes you want to use unicode characters directly in you code. For this you need to remember how to mark
them for the QChar and QString classes.

// Create a unicode character using the unicode for smile :-)
QChar smile(0x263A);
// you should see a :-) on you console
qDebug() << smile;
// Use a unicode in a string
QChar smile2 = QString("\u263A").at(0);
QVERIFY(smile == smile2);
// Create 12 smiles in a vector
QVector<QChar> smilies(12);
smilies.fill(smile);
// Can you see the smiles
qDebug() << smilies;

This gives you some examples of how to easily treat unicode aware text in Qt. For non-unicode the QByteArray
class also has many helper functions for conversion. Please read the Qt documentation for QString as it contains
tons of good examples.

Sequential Containers

A list, queue, vector or linked-list is a sequential container. The mostly used sequential container is the QList
class. It is a template based class and needs to be initialized with a type. It is also implicit shared and stores the
data internally on the heap. All container classes should be created on the stack. Normally you never want to use
new QList<T>(), which means never use new with a container.

The QList is as versatile as the QString class and offers a great API to explore your data. Below is a small
example how to use and iterate over a list using some new C++ 11 features.

// Create a simple list of ints using the new C++11 initialization
// for this you need to add "CONFIG += c++11" to your pro file.

15.4. Common Qt Classes 233

Qt5 Cadaques, Release 2015-03

QList<int> list{1,2};

// append another int
list << 3;

// We are using scopes to avoid variable name clashes

{ // iterate through list using Qt for each
int sum(0);
foreach (int v, list) {

sum += v;
}
QVERIFY(sum == 6);

}
{ // iterate through list using C++ 11 range based loop

int sum = 0;
for(int v : list) {

sum+= v;
}
QVERIFY(sum == 6);

}

{ // iterate through list using JAVA style iterators
int sum = 0;
QListIterator<int> i(list);

while (i.hasNext()) {
sum += i.next();

}
QVERIFY(sum == 6);

}

{ // iterate through list using STL style iterator
int sum = 0;
QList<int>::iterator i;
for (i = list.begin(); i != list.end(); ++i) {

sum += *i;
}
QVERIFY(sum == 6);

}

// using std::sort with mutable iterator using C++11
// list will be sorted in descending order
std::sort(list.begin(), list.end(), [](int a, int b) { return a > b; });
QVERIFY(list == QList<int>({3,2,1}));

int value = 3;
{ // using std::find with const iterator

QList<int>::const_iterator result = std::find(list.constBegin(), list.
→˓constEnd(), value);

QVERIFY(*result == value);
}

{ // using std::find using C++ lambda and C++ 11 auto variable
auto result = std::find_if(list.constBegin(), list.constBegin(),

→˓[value](int v) { return v == value; });
QVERIFY(*result == value);

}

234 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

Associative Containers

A map, a dictionary, or a set are examples of associative containers. They store a value using a key. They are
known for their fast lookup. We demonstrate the use of the most used associative container the QHash also
demonstrating some new C++ 11 features.

QHash<QString, int> hash({{"b",2},{"c",3},{"a",1}});
qDebug() << hash.keys(); // a,b,c - unordered
qDebug() << hash.values(); // 1,2,3 - unordered but same as order as keys

QVERIFY(hash["a"] == 1);
QVERIFY(hash.value("a") == 1);
QVERIFY(hash.contains("c") == true);

{ // JAVA iterator
int sum =0;
QHashIterator<QString, int> i(hash);
while (i.hasNext()) {

i.next();
sum+= i.value();
qDebug() << i.key() << " = " << i.value();

}
QVERIFY(sum == 6);

}

{ // STL iterator
int sum = 0;
QHash<QString, int>::const_iterator i = hash.constBegin();
while (i != hash.constEnd()) {

sum += i.value();
qDebug() << i.key() << " = " << i.value();
i++;

}
QVERIFY(sum == 6);

}

hash.insert("d", 4);
QVERIFY(hash.contains("d") == true);
hash.remove("d");
QVERIFY(hash.contains("d") == false);

{ // hash find not successfull
QHash<QString, int>::const_iterator i = hash.find("e");
QVERIFY(i == hash.end());

}

{ // hash find successfull
QHash<QString, int>::const_iterator i = hash.find("c");
while (i != hash.end()) {

qDebug() << i.value() << " = " << i.key();
i++;

}
}

// QMap
QMap<QString, int> map({{"b",2},{"c",2},{"a",1}});
qDebug() << map.keys(); // a,b,c - ordered ascending

QVERIFY(map["a"] == 1);
QVERIFY(map.value("a") == 1);
QVERIFY(map.contains("c") == true);

// JAVA and STL iterator work same as QHash

15.4. Common Qt Classes 235

Qt5 Cadaques, Release 2015-03

File IO

It is often required to read and write from files. QFile is actually a QObject but in most cases it is created on
the stack. QFile contains signals to inform the user when data can be read. This allows reading chunks of data
asynchronously until the whole file is read. For convenience it also allows reading data in blocking mode. This
should only be used for smaller amounts of data and not large files. Luckily we only use small amounts of data in
these examples.

Besides reading raw data from a file into a QByteArray you can also read data types using the QDataStream
and unicode string using the QTextStream. We will show you how.

QStringList data({"a", "b", "c"});
{ // write binary files

QFile file("out.bin");
if(file.open(QIODevice::WriteOnly)) {

QDataStream stream(&file);
stream << data;

}
}
{ // read binary file

QFile file("out.bin");
if(file.open(QIODevice::ReadOnly)) {

QDataStream stream(&file);
QStringList data2;
stream >> data2;
QCOMPARE(data, data2);

}
}
{ // write text file

QFile file("out.txt");
if(file.open(QIODevice::WriteOnly)) {

QTextStream stream(&file);
QString sdata = data.join(",");
stream << sdata;

}
}
{ // read text file

QFile file("out.txt");
if(file.open(QIODevice::ReadOnly)) {

QTextStream stream(&file);
QStringList data2;
QString sdata;
stream >> sdata;
data2 = sdata.split(",");
QCOMPARE(data, data2);

}
}

More Classes

Qt is a rich application framework. As such it has thousands of classes. It takes some time to get used to all
of these classes and how to use them. Luckily Qt has a very good documentation with many useful examples
includes. Most of the time you search for a class and the most common use cases are already provided as snippets.
Which means you just copy and adapt these snippets. Also Qt’s examples in the Qt source code are a great help.
Make sure you have them available and searchable to make your life more productive. Do not waste time. The
Qt community is always helpful. When you ask, it is very helpful to ask exact questions and provide a simple
example which displays your needs. This will drastically improve the response time of others. So invest a litte bit
of time to make the life of others who want to help you easier :-).

Here some classes whose documentation the author thinks are a must read: QObject, QString, QByteArray, QFile,
QDir, QFileInfo, QIODevice, QTextStream, QDataStream, QDebug, QLoggingCategory, QTcpServer, QTcp-

236 Chapter 15. Qt and C++

http://doc.qt.io/qt-5//qobject.html
http://doc.qt.io/qt-5//qstring.html
http://doc.qt.io/qt-5//qbytearray.html
http://doc.qt.io/qt-5//qfile.html
http://doc.qt.io/qt-5//qdir.html
http://doc.qt.io/qt-5//qfileinfo.html
http://doc.qt.io/qt-5//qiodevice.html
http://doc.qt.io/qt-5//qtextstream.html
http://doc.qt.io/qt-5//qdatastream.html
http://doc.qt.io/qt-5//qdebug.html
http://doc.qt.io/qt-5//qloggingcategory.html
http://doc.qt.io/qt-5//qtcpserver.html
http://doc.qt.io/qt-5//qtcpsocket.html
http://doc.qt.io/qt-5//qtcpsocket.html

Qt5 Cadaques, Release 2015-03

Socket, QNetworkRequest, QNetworkReply, QAbstractItemModel, QRegExp, QList, QHash, QThread, QPro-
cess, QJsonDocument, QJSValue.

That should be enough for the beginning.

Models in C++

Models in QML serve the purpose of providing data to ListViews, PathViews and other views which take a
model and create an instance of a delegate for each entry in the model. The view is smart enough to only create
these instances which are visible or in the cache range. This makes it possible to have large models with tens of
throusands of entries but still have a very slick user interface. The delegate acts like a template to be rendered with
the model entries data. So in summary: a view renders entries from the model using a delegate as a template. The
model is a data provider to views.

When you do not want to use C++ you can also define models in pure QML. You have several ways to provide a
model to the view. For handling of data coming from C++ or large amount of data the C++ model is more suitable
than these pure QML approaches. But often you only need a few entries then these QML models are well suited.

ListView {
// using a integer as model
model: 5
delegate: Text { text: 'index: ' + index }

}

ListView {
// using a JS array as model
model: ['A', 'B', 'C', 'D', 'E']
delegate: Text { 'Char['+ index +']: ' + modelData }

}

ListView {
// using a dynamic QML ListModel as model
model: ListModel {

ListElement { char: 'A' }
ListElement { char: 'B' }
ListElement { char: 'C' }
ListElement { char: 'D' }
ListElement { char: 'E' }

}
delegate: Text { 'Char['+ index +']: ' + model.char }

}

The QML views knows how to handle these different models. For models coming from the C++ world the
view expects a specific protocol to be followed. This protocol is defined in an API (QAbstractItemModel)
together with documentation for the dynamic behavior. The API was developed for the desktop widget world
and is flexible enough to act as a base for trees, or multi column tables as well as lists. In QML, we almost only
use the list version of the API (QAbstractListModel). The API contains some mandatory functions to be
implemented and some are optional. The optional parts mostly handle the dynamic use case of adding or removing
of data.

A simple model

A typical QML C++ model derives from QAbstractListModel and implements at least the data and
rowCount function. In this example we will use a series of SVG color names provided by the QColor class
and display them using our model. The data is stored into a QList<QString> data container.

Our DataEntryModel is derived form QAbstractListModel and implementats the mandatory functions.
We can ignore the parent in rowCount as this is only used in a tree model. The QModelIndex class provides
the row and column information for the cell, for which the view wants to retrieve data. The view is pulling

15.5. Models in C++ 237

http://doc.qt.io/qt-5//qtcpsocket.html
http://doc.qt.io/qt-5//qtcpsocket.html
http://doc.qt.io/qt-5//qnetworkrequest.html
http://doc.qt.io/qt-5//qnetworkreply.html
http://doc.qt.io/qt-5//qabstractitemmodel.html
http://doc.qt.io/qt-5//qregexp.html
http://doc.qt.io/qt-5//qlist.html
http://doc.qt.io/qt-5//qhash.html
http://doc.qt.io/qt-5//qthread.html
http://doc.qt.io/qt-5//qprocess.html
http://doc.qt.io/qt-5//qprocess.html
http://doc.qt.io/qt-5//qjsondocument.html
http://doc.qt.io/qt-5//qjsvalue.html

Qt5 Cadaques, Release 2015-03

information from the model on a row/column and role base. The QAbstractListModel is defined in QtCore
but QColor in QtGui. That is why we have the additional QtGui dependency. For QML applications it is okay
to depend on QtGui but it should normally not depend on QtWidgets.

#ifndef DATAENTRYMODEL_H
#define DATAENTRYMODEL_H

#include <QtCore>
#include <QtGui>

class DataEntryModel : public QAbstractListModel
{

Q_OBJECT
public:

explicit DataEntryModel(QObject *parent = 0);
~DataEntryModel();

public: // QAbstractItemModel interface
virtual int rowCount(const QModelIndex &parent) const;
virtual QVariant data(const QModelIndex &index, int role) const;

private:
QList<QString> m_data;

};

#endif // DATAENTRYMODEL_H

On the implementation side the most complex part is the data function. We first need to make a range check.
And then we check for the display role. The Qt::DisplayRole is the default text role a view will ask for.
There is a small set of default roles defined in Qt which can be used, but normally a model will define its own
roles for clarity. All calls which do not contain the display role are ignored at the moment and the default value
QVariant() is returned.

#include "dataentrymodel.h"

DataEntryModel::DataEntryModel(QObject *parent)
: QAbstractListModel(parent)

{
// initialize our data (QList<QString>) with a list of color names
m_data = QColor::colorNames();

}

DataEntryModel::~DataEntryModel()
{
}

int DataEntryModel::rowCount(const QModelIndex &parent) const
{

Q_UNUSED(parent);
// return our data count
return m_data.count();

}

QVariant DataEntryModel::data(const QModelIndex &index, int role) const
{

// the index returns the requested row and column information.
// we ignore the column and only use the row information
int row = index.row();

// boundary check for the row
if(row < 0 || row >= m_data.count()) {

return QVariant();
}

238 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

// A model can return data for different roles.
// The default role is the display role.
// it can be accesses in QML with "model.display"
switch(role) {

case Qt::DisplayRole:
// Return the color name for the particular row
// Qt automatically converts it to the QVariant type
return m_data.value(row);

}

// The view asked for other data, just return an empty QVariant
return QVariant();

}

The next step would be to register the model with QML using the qmlRegisterType call. This is done inside
the main.cpp before the QML file was loaded.

#include <QtGui>
#include <QtQml>

#include "dataentrymodel.h"

int main(int argc, char *argv[])
{

QGuiApplication app(argc, argv);

// register the type DataEntryModel
// under the url "org.example" in version 1.0
// under the name "DataEntryModel"
qmlRegisterType<DataEntryModel>("org.example", 1, 0, "DataEntryModel");

QQmlApplicationEngine engine;
engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

return app.exec();
}

Now you can access the DataEntryModel using the QML import statement import org.example 1.0
and use it just like other QML item DataEntryModel {}.

We use this in this example to display a simple list of color entries.

import org.example 1.0

ListView {
id: view
anchors.fill: parent
model: DataEntryModel {}
delegate: ListDelegate {

// use the defined model role "display"
text: model.display

}
highlight: ListHighlight { }

}

The ListDelegate is a custom type to display some text. The ListHighlight is just a rectangle. The code
was extracted to keep the example compact.

The view can now display a list of strings using the C++ model and the display property of the model. It is still
very simple, but already usable in QML. Normally the data is provided from outside the model and the model
would act as an interface to the view.

15.5. Models in C++ 239

Qt5 Cadaques, Release 2015-03

More Complex Data

In reality the model data is often much more complex. So there is a need to define custom roles so that the view
can query other data via properties. For example the model could provide not only the color as hex string, but
maybe also the hue, saturation and brightness from the HSV color model as “model.hue”, “model.saturation” and
“model.brightness” in QML.

#ifndef ROLEENTRYMODEL_H
#define ROLEENTRYMODEL_H

#include <QtCore>
#include <QtGui>

class RoleEntryModel : public QAbstractListModel
{

Q_OBJECT
public:

// Define the role names to be used
enum RoleNames {

NameRole = Qt::UserRole,
HueRole = Qt::UserRole+2,
SaturationRole = Qt::UserRole+3,
BrightnessRole = Qt::UserRole+4

};

explicit RoleEntryModel(QObject *parent = 0);
~RoleEntryModel();

// QAbstractItemModel interface
public:

virtual int rowCount(const QModelIndex &parent) const override;
virtual QVariant data(const QModelIndex &index, int role) const override;

protected:
// return the roles mapping to be used by QML
virtual QHash<int, QByteArray> roleNames() const override;

private:
QList<QColor> m_data;
QHash<int, QByteArray> m_roleNames;

};

#endif // ROLEENTRYMODEL_H

In the header we added the role mapping to be used for QML. When QML tries now to access a property from the
model (e.g. “model.name”) the listview will lookup the mapping for “name” and ask the model for data using the
NameRole. User defined roles should start with Qt::UserRole and need to be unique for each model.

#include "roleentrymodel.h"

RoleEntryModel::RoleEntryModel(QObject *parent)
: QAbstractListModel(parent)

{
// Set names to the role name hash container (QHash<int, QByteArray>)
// model.name, model.hue, model.saturation, model.brightness
m_roleNames[NameRole] = "name";
m_roleNames[HueRole] = "hue";
m_roleNames[SaturationRole] = "saturation";
m_roleNames[BrightnessRole] = "brightness";

// Append the color names as QColor to the data list (QList<QColor>)
for(const QString& name : QColor::colorNames()) {

m_data.append(QColor(name));
}

240 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

}

RoleEntryModel::~RoleEntryModel()
{
}

int RoleEntryModel::rowCount(const QModelIndex &parent) const
{

Q_UNUSED(parent);
return m_data.count();

}

QVariant RoleEntryModel::data(const QModelIndex &index, int role) const
{

int row = index.row();
if(row < 0 || row >= m_data.count()) {

return QVariant();
}
const QColor& color = m_data.at(row);
qDebug() << row << role << color;
switch(role) {
case NameRole:

// return the color name as hex string (model.name)
return color.name();

case HueRole:
// return the hue of the color (model.hue)
return color.hueF();

case SaturationRole:
// return the saturation of the color (model.saturation)
return color.saturationF();

case BrightnessRole:
// return the brightness of the color (model.brightness)
return color.lightnessF();

}
return QVariant();

}

QHash<int, QByteArray> RoleEntryModel::roleNames() const
{

return m_roleNames;
}

The implementation now has changed only in two places. First in the initialization. We now initialize the data
list with QColor data types. Additionally we define our role name map to be accessible for QML. This map is
returned later in the ::roleNames function.

The second change is in the ::data function. We extend the switch to cover the other roles (e.g hue, saturation,
brightness). There is no way to return a SVG name from a color, as a color can take any color and SVG names are
limited. So we skip this. Storing the names would require to create a structure struct { QColor,QString
} to be able to identify the named color.

After registering the type we can use the model and its entries in our user interface.

ListView {
id: view
anchors.fill: parent
model: RoleEntryModel {}
focus: true
delegate: ListDelegate {

text: 'hsv(' +
Number(model.hue).toFixed(2) + ',' +
Number(model.saturation).toFixed() + ',' +
Number(model.brightness).toFixed() + ')'

15.5. Models in C++ 241

Qt5 Cadaques, Release 2015-03

color: model.name
}
highlight: ListHighlight { }

}

We convert the returned type to a JS number type to be able to format the number using fixed-point notation.
The code would also work without the Number call (e.g. plain model.saturation.toFixed(2)). Which
format to choose, depends how much you trust the incoming data.

Dynamic Data

Dynamic data covers the aspects of inserting, removing and clearing the data from the model. The
QAbstractListModel expect a certain behavior when entries are removed or inserted. The behavior is ex-
pressed in signals which needs to be called before and after the manipulation. For example to insert a row into
a model you need first to emit the signal beginInsertRows, then manipulate the data and then finally emit
endInsertRows.

We will add the following functions to our headers. These functions are declared using Q_INVOKABLE to be able
to call them from QML. Another way would be to declare them a public slots.

// inserts a color at the index (0 at begining, count-1 at end)
Q_INVOKABLE void insert(int index, const QString& colorValue);
// uses insert to insert a color at the end
Q_INVOKABLE void append(const QString& colorValue);
// removes a color from the index
Q_INVOKABLE void remove(int index);
// clear the whole model (e.g. reset)
Q_INVOKABLE void clear();

Additionally we define a count property to get the size of the model and a get method to get a color at the given
index. This is useful when you would like to iterate over the model content from QML.

// gives the size of the model
Q_PROPERTY(int count READ count NOTIFY countChanged)
// gets a color at the index
Q_INVOKABLE QColor get(int index);

The implementation for insert checks first the boundaries and if the given value is valid. Only then do we begin
inserting the data.

void DynamicEntryModel::insert(int index, const QString &colorValue)
{

if(index < 0 || index > m_data.count()) {
return;

}
QColor color(colorValue);
if(!color.isValid()) {

return;
}
// view protocol (begin => manipulate => end]
emit beginInsertRows(QModelIndex(), index, index);
m_data.insert(index, color);
emit endInsertRows();
// update our count property
emit countChanged(m_data.count());

}

Append is very simple. We reuse the insert function with the size of the model.

void DynamicEntryModel::append(const QString &colorValue)
{

242 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

insert(count(), colorValue);
}

Remove is similar to insert but it calls according to the remove operation protocol.

void DynamicEntryModel::remove(int index)
{

if(index < 0 || index >= m_data.count()) {
return;

}
emit beginRemoveRows(QModelIndex(), index, index);
m_data.removeAt(index);
emit endRemoveRows();
// do not forget to update our count property
emit countChanged(m_data.count());

}

The helper function count is trivial. It just returns the data count. The get function is also quite simple.

QColor DynamicEntryModel::get(int index)
{

if(index < 0 || index >= m_data.count()) {
return QColor();

}
return m_data.at(index);

}

You need to be carefull that you only return a value which QML understands. If it is not one of the ba-
sic QML types or types kown to QML you need to register the type first with qmlRegisterType or
qmlRegisterUncreatableType. You use qmlRegisterUncreatableType if the user shall not be
able to instantiate its own object in QML.

Now you can use the model in QML and insert, append, remove entries from the model. Here is a small example
which allows the user to enter a color name or color hex value and the color is then appended onto the model and
shown in the list view. The red circle on the delegate allows the user to remove this entry from the model. After
the entry is remove the list view is notified by the model and updates its content.

15.5. Models in C++ 243

Qt5 Cadaques, Release 2015-03

And here is the QML code. You find the full source code also in the assets for this chapter. The example uses the
QtQuick.Controls and QtQuick.Layout module to make the code more compact. These controls module provides a
set of desktop related ui elements in QtQuick and the layouts module provides some very useful layout managers.

import QtQuick 2.5
import QtQuick.Window 2.2
import QtQuick.Controls 1.5
import QtQuick.Layouts 1.2

// our module
import org.example 1.0

Window {
visible: true
width: 480
height: 480

Background { // a dark background
id: background

}

// our dyanmic model
DynamicEntryModel {

id: dynamic
onCountChanged: {

// we print out count and the last entry when count is changing
print('new count: ' + count);
print('last entry: ' + get(count-1));

}
}

ColumnLayout {
anchors.fill: parent
anchors.margins: 8
ScrollView {

Layout.fillHeight: true
Layout.fillWidth: true
ListView {

id: view
// set our dynamic model to the views model property
model: dynamic
delegate: ListDelegate {

width: ListView.view.width
// construct a string based on the models proeprties
text: 'hsv(' +

Number(model.hue).toFixed(2) + ',' +
Number(model.saturation).toFixed() + ',' +
Number(model.brightness).toFixed() + ')'

// sets the font color of our custom delegates
color: model.name

onClicked: {
// make this delegate the current item
view.currentIndex = index
view.focus = true

}
onRemove: {

// remove the current entry from the model
dynamic.remove(index)

}
}
highlight: ListHighlight { }

244 Chapter 15. Qt and C++

Qt5 Cadaques, Release 2015-03

// some fun with transitions :-)
add: Transition {

// applied when entry is added
NumberAnimation {

properties: "x"; from: -view.width;
duration: 250; easing.type: Easing.InCirc

}
NumberAnimation { properties: "y"; from: view.height;

duration: 250; easing.type: Easing.InCirc
}

}
remove: Transition {

// applied when entry is removed
NumberAnimation {

properties: "x"; to: view.width;
duration: 250; easing.type: Easing.InBounce

}
}
displaced: Transition {

// applied when entry is moved
// (e.g because another element was removed)
SequentialAnimation {

// wait until remove has finished
PauseAnimation { duration: 250 }
NumberAnimation { properties: "y"; duration: 75
}

}
}

}
}
TextEntry {

id: textEntry
onAppend: {

// called when the user presses return on the text field
// or clicks the add button
dynamic.append(color)

}

onUp: {
// called when the user presses up while the text field is focused
view.decrementCurrentIndex()

}
onDown: {

// same for down
view.incrementCurrentIndex()

}

}
}

}

Model view programming is one of the hardest tasks in Qt. It is one of the very few classes where you have to
implement an interface as a normal application developer. All other classes you just use normally. The sketching
of models should always start on the QML side. You should envision how your users would use your model inside
QML. For this it is often a good idea to create a prototype first using the ListModel to see how this best works
in QML. This is also true when it comes to defining QML APIs. Making data available from C++ to QML is
not only a technology boundary it is also a programming paradigm change from imperative to declarative style
programming. So be prepared for some set backs and aha moments:-).

Advanced Techniques

15.5. Models in C++ 245

Qt5 Cadaques, Release 2015-03

246 Chapter 15. Qt and C++

CHAPTER 16

Extending QML with C++

Section author: jryannel

Note: Last Build: March 11, 2018 at 15:30 CET

The source code for this chapter can be found in the assets folder.

Executing QML within the confined space that QML as a language offers can sometimes be limiting. By extending
the QML run-time with native functionality written in C++, the application can utilize the full performance and
freedom of the base platform.

Understanding the QML Run-time

When running QML, it is being executed in a run-time environment. The run-time is implemented in C++ in the
QtQml module. It consists of an engine, responsible for the execution of QML, contexts, holding the properties
accessible for each component, and components, the instantiated QML elements.

#include <QtGui>
#include <QtQml>

int main(int argc, char **argv)
{

QGuiApplication app(argc, argv);
QUrl source(QStringLiteral("qrc:/main.qml"));
QQmlApplicationEngine engine;
engine.load(source);
return app.exec();

}

In the example the QGuiApplication encapsulates all that is related to the application instance (e.g. applica-
tion name, command line arguments and managing the event loop). The QQmlApplicationEngine manages
the hierarchical order of contexts and components. It requires typical a qml file to be loaded as the starting point
of your application. In this case it is a main.qml containing a window and a text type.

Note: Loading a main.qml with a simple Item as the root type through the QmlApplicationEngine
will not show anything on your display, as it requires a window to manage a surface for rendering. The engine is
capable of loading qml code which does not contain any user interface (e.g plain objects). Because of this it does
not create a window for you by default. The qmlscene or the new qml runtime will internally first check if the
main qml file contains a window as a root item and if not create one for you and set the root item as a child to the
newly created window.

247

https://github.com/jryannel

Qt5 Cadaques, Release 2015-03

import QtQuick 2.5
import QtQuick.Window 2.2

Window {
visible: true
width: 512
height: 300

Text {
anchors.centerIn: parent
text: "Hello World!"

}
}

In the qml file we declare our dependencies here it is QtQuick and QtQuick.Window. These declaration will
trigger a lookup for these modules in the import paths and on success will load the required plugins by the engine.
The newly loaded types will then be made available to the qml file controlled by a qmldir.

Is it also possible to shortcut the plugin creation by adding our types directly to the engine. Here we assume we
have a CurrentTime QObject based class.

QQmlApplicationEngine engine;

qmlRegisterType<CurrentTime>("org.example", 1, 0, "CurrentTime");

engine.load(source);

Now we can also use the CurrentTime type in our qml file.

import org.example 1.0

CurrentTime {
// access properties, functions, signals

}

For the really lazy there is also the very direct way through context properties.

QScopedPointer<CurrentTime> current(new CurrentTime());

QQmlApplicationEngine engine;

engine.rootContext().setContextProperty("current", current.value())

engine.load(source);

Note: Do not mix up setContextProperty() and setProperty(). The first on sets a context property
on a qml context, and setProperty() sets a dynamic property value on a QObject and will not help you.

Now you can use the current property everywhere in your application. Thanks to context inheritance.

import QtQuick 2.5
import QtQuick.Window 2.0

Window {
visible: true
width: 512
height: 300

Component.onCompleted: {
console.log('current: ' + current)

248 Chapter 16. Extending QML with C++

Qt5 Cadaques, Release 2015-03

}
}

Here are the different ways you can extend QML in general:

• Context properties - setContextProperty()

• Register type with engine - calling qmlRegisterType in your main.cpp

• QML extension plugins - To be discussed next

Context properties are easy to use for small applications. They do not require many effort you just expose your
system API with kind of global objects. It is helpful to ensure there will be no naming conflicts (e.g by using a
special character for this ($) for example $.currentTime). $ is a valid character for JS variables.

Registering QML types allows the user to control the lifecycle of an c++ object from QML. This is not possible
with the context properties. Also it does not pollute the global namespace. Still all types need to be registered first
and by this all libraries need to be linked on application start, which in most cases is not really a problem.

The most flexible system is provided by the QML extension plugins. They allow you to register types in a plugin
which is loaded when the first QML file calls the import identifier. Also by using a QML singleton there is no
need to pollute the global namespace anymore. Plugins allow you to reuse modules across projects, which comes
quite handy when you do more than one project with Qt.

For the remainder of this chapter will focus on the qml extension plugins. As they provide the greates flexibility
and reuse.

Plugin Content

A plugin is a library with a defined interface, which is loaded on demand. This differs from a li-
brary as a library is linked and loaded on startup of the application. In the QML case the interface is
called QQmlExtensionPlugin. There are two methods interesting for us initializeEngine() and
registerTypes(). When the plugin is loaded first the initializeEngine() is called, which allows
us to access the engine to expose plugin objects to the root context. In the majority you will only use the
registerTypes()method. This allows you to register you custom QML types with the engine on the provided
url.

Let us step back a little bit and think about a potential file IO type which would allow us to read/write small text
files form QML. A first iteration could look like this in a mocked QML implementation.

// FileIO.qml (good)
QtObject {

function write(path, text) {};
function read(path) { return "TEXT"}

}

This is a pure qml implementation of a possible C++ based QML API for exploring an API. We see we should
have a read and write function. Where the write function takes a path and a text and the read function takes a path
and returns a text. As it looks path and text are common parameters and maybe we can extract them as properties.

// FileIO.qml (better)
QtObject {

property url source
property string text
function write() { // open file and write text };
function read() { // read file and assign to text };

}

Yes this looks more like a QML API. We use properties to allow our environment to bind to our properties and
react on changes.

To create this API in C++ we would need to create an interface something like this.

16.2. Plugin Content 249

Qt5 Cadaques, Release 2015-03

class FileIO : public QObject {
...
Q_PROPERTY(QUrl source READ source WRITE setSource NOTIFY sourceChanged)
Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)
...

public:
Q_INVOKABLE void read();
Q_INVOKABLE void write();
...

}

This FileIO type need to be registered with the QML engine. We want to use it under the “org.example.io”
module

import org.example.io 1.0

FileIO {
}

A plugin could expose several types with the same module. But it can not expose several modules from one plugin.
So there is a one to one relationship between modules and plugins. This relationship is expressed by the module
identifier.

Creating the plugin

Qt Creator contains a wizard to create a QtQuick 2 QML Extension Plugin we use it to create a plugin called
fileio with a FileIO object to start with in the module “org.example.io”.

The plugin class is dervived from QQmlExtensionPlugin and implements the registerTypes() func-
tion. The Q_PLUGIN_METADATA line is mandatory to identify the plugin as an qml extension plugin. Besides
this there is nothing spectacular going on.

#ifndef FILEIO_PLUGIN_H
#define FILEIO_PLUGIN_H

#include <QQmlExtensionPlugin>

class FileioPlugin : public QQmlExtensionPlugin
{

Q_OBJECT
Q_PLUGIN_METADATA(IID "org.qt-project.Qt.QQmlExtensionInterface")

public:
void registerTypes(const char *uri);

};

#endif // FILEIO_PLUGIN_H

In the implementation of the registerTypes we simply register our FileIO class using the
qmlRegisterType function.

#include "fileio_plugin.h"
#include "fileio.h"

#include <qqml.h>

void FileioPlugin::registerTypes(const char *uri)
{

// @uri org.example.io

250 Chapter 16. Extending QML with C++

Qt5 Cadaques, Release 2015-03

qmlRegisterType<FileIO>(uri, 1, 0, "FileIO");
}

Interestingly we can not see here the module URI (e.g. org.example.io). This seems to be set from the outside.

When you look into your project directory you will find a qmldir file. This file specifies the content of your qml
plugin or better the QML side of your plugin. It should look like this for you.

module org.example.io
plugin fileio

The module is the URI under which your plugin is reachable by others and the plugin line must be identical with
your plugin file name (under mac this would be libfileio_debug.dylib on the file system and fileio in the qmldir).
These files where created by Qt Creator based on the given information. The module uri is also available in the
.pro file. There is is used to build up the install directory.

When you call make install in your build folder the library will be copied into the Qt qml folder (for Qt 5.4
on mac this would be “~/Qt/5.4/clang_64/qml”. The exact path depends on you Qt installation location and the
used compiler on your system). There you will find a the library inside the “org/example/io” folder. The content
are these two files currently

libfileio_debug.dylib
qmldir

When importing a module called “org.example.io”, the qml engine will look in one of the import paths and tries
to locate the “org/example/io” path with a qmldir. The qmldir then will tell the engine which library to load as a
qml extension plugin using which module URI. Two modules with the same URI will override each other.

FileIO Implementation

The FileIO implementation is straightforward. Remember the API we want to create should look like this.

class FileIO : public QObject {
...
Q_PROPERTY(QUrl source READ source WRITE setSource NOTIFY sourceChanged)
Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)
...

public:
Q_INVOKABLE void read();
Q_INVOKABLE void write();
...

}

We will leave out the properties, as they are simple setters and getters.

The read method opens a file in read mode and reads the data using a text stream.

void FileIO::read()
{

if(m_source.isEmpty()) {
return;

}
QFile file(m_source.toLocalFile());
if(!file.exists()) {

qWarning() << "Does not exits: " << m_source.toLocalFile();
return;

}
if(file.open(QIODevice::ReadOnly)) {

QTextStream stream(&file);
m_text = stream.readAll();

16.4. FileIO Implementation 251

Qt5 Cadaques, Release 2015-03

emit textChanged(m_text);
}

}

When the text is changed it is necessary to inform others about the change using emit
textChanged(m_text). Otherwise property binding will not work.

The write method does the same but opens the file in write mode and uses the stream to write the contents.

void FileIO::write()
{

if(m_source.isEmpty()) {
return;

}
QFile file(m_source.toLocalFile());
if(file.open(QIODevice::WriteOnly)) {

QTextStream stream(&file);
stream << m_text;

}
}

Do not forget to call make install at the end. Otherwise your plugin files will not be copied over to the qml
folder and the qml engine will not be able to locate the module.

As the reading and writing is blocking you should only use this FileIO for small texts, otherwise you will block
the UI thread of Qt. Be warned!

Using FileIO

Now we can use our newly created file to access some nice data. For this example we want to read some city data in
a JSON format and display it in a table. We will use two projects, one the extension plugin (called fileio) which
provides us a way to read and write text from a file and the other one, which displays the data in a table (CityUI)
by using the file io for reading and writing of files. The data used in this example is in the cities.json file.

252 Chapter 16. Extending QML with C++

Qt5 Cadaques, Release 2015-03

JSON is just text, which is formatted in such a way that it can be converted into a valid JS object/array and back to
text. We use our FileIO to read the JSON formatted data and convert it into a JS object using JSON.parse().
The data is later used as a model to the table view. This is roughly the content of our read document function. For
saving we convert the data back into a text format and use the write function for saving.

The city JSON data is a formatted text file, with a set of city data entries, where each entry contains interesting
data about the city.

[
{

"area": "1928",
"city": "Shanghai",
"country": "China",
"flag": "22px-Flag_of_the_People's_Republic_of_China.svg.png",
"population": "13831900"

},
...

]

The Application Window

We use the Qt Creator QtQuick Application wizard to create a Qt Quick controls based application. We
will not use the new QML forms as this is difficult to explain in a book, although the new forms approach with a
ui.qml file is much more usable than previous. So you can remove/delete the forms file for now.

The basic setup is an ApplicationWindow which can contain a toolbar, menubar and statusbar. We will only
use the menubar to create some standard menu entries for opening and saving the document. The basic setup will
just display an empty window.

import QtQuick 2.5
import QtQuick.Controls 1.3
import QtQuick.Window 2.2
import QtQuick.Dialogs 1.2

ApplicationWindow {
id: root
title: qsTr("City UI")
width: 640
height: 480
visible: true

}

Using Actions

To better use/reuse our commands we use the QML Action type. This will allow us later to use the same action
also for a potential tool bar. The open and save and exit actions are quit standard. The open and save action do
not contain any logic yet, this we will come later. The menubar is created with a file menu and these three action
entries. Additional we prepare already a file dialog, which will allow us to pick our city document later. A dialog
is not visible when declared, you need to use the open() method to show it.

...
Action {

id: save
text: qsTr("&Save")
shortcut: StandardKey.Save
onTriggered: { }

}

Action {

16.5. Using FileIO 253

Qt5 Cadaques, Release 2015-03

id: open
text: qsTr("&Open")
shortcut: StandardKey.Open
onTriggered: {}

}

Action {
id: exit
text: qsTr("E&xit")
onTriggered: Qt.quit();

}

menuBar: MenuBar {
Menu {

title: qsTr("&File")
MenuItem { action: open }
MenuItem { action: save }
MenuSeparator { }
MenuItem { action: exit }

}
}

...

FileDialog {
id: openDialog
onAccepted: { }

}

Formatting the Table

The content of the city data shall be displayed in a table. For this we use the TableView control and declare
4 columns: city, country, area, population. Each column is a standard TableViewColumn. Later we will add
columns for the flag and remove operation which will require a custom column delegate.

TableView {
id: view
anchors.fill: parent
TableViewColumn {

role: 'city'
title: "City"
width: 120

}
TableViewColumn {

role: 'country'
title: "Country"
width: 120

}
TableViewColumn {

role: 'area'
title: "Area"
width: 80

}
TableViewColumn {

role: 'population'
title: "Population"
width: 80

}
}

Now the application should show you a menubar with a file menu and an empty table with 4 table headers. The

254 Chapter 16. Extending QML with C++

Qt5 Cadaques, Release 2015-03

next step will be to populate the table with useful data using our FileIO extension.

The cities.json document is an array of city entries. Here is an example.

[
{

"area": "1928",
"city": "Shanghai",
"country": "China",
"flag": "22px-Flag_of_the_People's_Republic_of_China.svg.png",
"population": "13831900"

},
...

]

Our job is it to allow the user to select the file, read it, convert it and set it onto the table view.

Reading Data

For this we let the open action open the file dialog. When the user has selected a file the onAccepted method is
called on the file dialog. There we call the readDocument() function. The readDocument() function sets
the url from the file dialog to our FileIO object and calls the read() method. The loaded text from FileIO
is then parsed using the JSON.parse() method and the resulting object is directly set onto the table view as a
model. How convenient is that.

Action {
id: open
...
onTriggered: {

openDialog.open()
}

}

...

FileDialog {
id: openDialog
onAccepted: {

root.readDocument()
}

}

function readDocument() {
io.source = openDialog.fileUrl
io.read()
view.model = JSON.parse(io.text)

16.5. Using FileIO 255

Qt5 Cadaques, Release 2015-03

}

FileIO {
id: io

}

Writing Data

For saving the document, we hook up the save action to the saveDocument() function. The save doc-
ument function takes the model from the view, which is a JS object and converts it into a string using the
JSON.stringify() function. The resulting string is set to the text property of our FileIO object and we
call write() to save the data to disk. The “null” and “4” paramters on the stringify function will format
the resulting JSON data using indentation with 4 spaces. This is just for better reading of the saved document.

Action {
id: save
...
onTriggered: {

saveDocument()
}

}

function saveDocument() {
var data = view.model
io.text = JSON.stringify(data, null, 4)
io.write()

}

FileIO {
id: io

}

This is basically the application with reading, writing and displaying a JSON document. Think about all the time
spend by writing XML readers and writers. With JSON all you need is a way to read and write a text file or send
receive a text buffer.

Finishing Touch

The application is not fully ready yet. We still want to show the flags and allow the user to modify the document
by removing cities from the model.

The flags are stored for this example relative to the main.qml document in a flags folder. To be able to show
them the table column needs to define a custom delegate for rendering the flag image.

TableViewColumn {
delegate: Item {

Image {
anchors.centerIn: parent
source: 'flags/' + styleData.value

}
}
role: 'flag'
title: "Flag"
width: 40

}

That is all. It exposes the flag property from the JS model as styleData.value to the delegate. The delegate
then adjust the image path to pre-pend 'flags/' and displays it.

256 Chapter 16. Extending QML with C++

Qt5 Cadaques, Release 2015-03

16.5. Using FileIO 257

Qt5 Cadaques, Release 2015-03

For removing we use a similar technique to display a remove button.

TableViewColumn {
delegate: Button {

iconSource: "remove.png"
onClicked: {

var data = view.model
data.splice(styleData.row, 1)
view.model = data

}
}
width: 40

}

For the data removal operation we get hold on the view model and then remove one entry using the JS splice
function. This method is available to us as the model is from the type JS array. The splice method changes the
content of an array by removing existing elements and/or adding new elements.

A JS array is unfortunately not so smart as a Qt model like the QAbstractItemModel, which will notify the
view about row changes or data changes. The view will not show any updated data by now as it is never notified
about any changes. Only when we set the data back to the view, the view recognizes there is new data and refreshes
the view content. Setting the model again using view.model = data is a way to let the view know there was
a data change.

258 Chapter 16. Extending QML with C++

Qt5 Cadaques, Release 2015-03

Summary

The plugin created is a very simple plugin but it can be re-used now and extended by other types for different
applications. Using plugins creates a very flexible solution. For example you can now start the UI by just using
the qmlscene. Open the folder where your CityUI project is an start the UI with qmlscene main.qml.
I really encourage you to write your applications in a way so that they work with a qmlscene. This has a
tremendous increase in turnaround time for the UI developer and it is also a good habbit to keep a clear separation.

Using plugins has one drawback the deployment gets more difficult for simple applications. You need now to
deploy your plugin with your application. If this is a problem for you you can still use the same FileIO object
to register it directly in your main.cpp using qmlRegisterType. The QML code would stay the same.

Often in larger projects you do not use an application as such. You have a simple qml runtime similar to
qmlscene and require all native functionality to come as plugins. And your projects are simple pure qml
projects using these qml extension plugins. This provides a great flexibility and removes the compilation step
for UI changes. After editing a QML file you just need to run the UI. This allows the user interface writers to stay
flexible and agile to make all these little changes to push pixels.

Plugins provide a nice and clean separation between C++ backend development and QML frontend development.
When developing QML plugins always have the QML side in mind and do not hesitate to start with a QML only
mockup first to validate your API before you implement it in C++. If an API is written in C++ people often
hesitate to change it or not to speak of to rewrite it. Mocking an API in QML provides much more flexibility and
less initial investment. When using plugins the switch between a mocked API and the real API is just changing
the import path for the qml runtime.

16.6. Summary 259

Qt5 Cadaques, Release 2015-03

260 Chapter 16. Extending QML with C++

CHAPTER 17

Assets

The assets contain all files for reading the book offline and also the chapter examples as downloadable format.

Offline Books

• Book as eBook

• Book as PDF

• Book as QtHelp

Source Code Examples

• Chapter 01 examples (ch01-assets.tgz)

• Chapter 04 examples (ch04-assets.tgz)

• Chapter 05 examples (ch05-assets.tgz)

• Chapter 06 examples (ch06-assets.tgz)

• Chapter 07 examples (ch07-assets.tgz)

• Chapter 08 examples (ch08-assets.tgz)

• Chapter 09 examples (ch09-assets.tgz)

• Chapter 10 examples (ch10-assets.tgz)

• Chapter 11 examples (ch11-assets.tgz)

• Chapter 12 examples (ch12-assets.tgz)

• Chapter 13 examples (ch13-assets.tgz)

• Chapter 14 examples (ch14-assets.tgz)

• Chapter 15 examples (ch15-assets.tgz)

• Chapter 16 examples (ch16-assets.tgz)

Chapter Queue

The chapter queue are the chapters we are working on. They might be almost ready or in an infante state. Give it
a try if you like.

261

Qt5 Cadaques, Release 2015-03

262 Chapter 17. Assets

Index

A
anchors, 46
Animations, 55

B
binding, 27
Bouncing Ball, 55

C
ClickableImage, 55
ClickableImage Helper, 39
ColorAnimation, 55
Column, 42
components, 36

E
Easing Curves, 55

F
Flow, 42
focus, 49
FocusScope, 49

G
gradients, 32
Grid, 42
GridView, 75
Grouped Animations, 55

I
Image, 32
Item, 32

K
KeyNavigation, 49
Keys, 49

L
ListElement, 75
ListModel, 75
ListView, 75

M
MouseArea, 32

N
NumberAnimation, 55

P
ParallelAnimation, 55
PathView, 75
properties, 27

Q
qmlscene, 27

R
Rectangle, 32
Repeater, 42, 75
Rotation, 39
Row, 42

S
Scaling, 39
scripting, 27
SequentialAnimation, 55
Square Helper, 42
Stacking order, 39
States, 55
syntax, 27

T
Text, 32
TextEdit, 49
TextInput, 49
Transformation, 39
Transition, 55
Transitions, 55
Translation, 39

X
XmlListModel, 75

263

	Meet Qt 5
	Preface
	Qt 5 Introduction
	Qt Building Blocks
	Qt Project

	Get Started
	Installing Qt 5 SDK
	Hello World
	Application Types
	Summary

	Qt Creator IDE
	The User Interface
	Registering your Qt Kit
	Managing Projects
	Using the Editor
	Locator
	Debugging
	Shortcuts

	Quick Starter
	QML Syntax
	Basic Elements
	Components
	Simple Transformations
	Positioning Elements
	Layout Items
	Input Elements
	Advanced Techniques

	Fluid Elements
	Animations
	States and Transitions
	Advanced Techniques

	Model-View-Delegate
	Concept
	Basic Models
	Dynamic Views
	Delegate
	Advanced Techniques
	Summary

	Canvas Element
	Convenient API
	Gradients
	Shadows
	Images
	Transformation
	Composition Modes
	Pixel Buffers
	Canvas Paint
	Porting from HTML5 Canvas

	Particle Simulations
	Concept
	Simple Simulation
	Particle Parameters
	Directed Particles
	Particle Painters
	Affecting Particles
	Particle Groups
	Summary

	Shader Effects
	OpenGL Shaders
	Shader Elements
	Fragment Shaders
	Wave Effect
	Vertex Shader
	Curtain Effect
	Qt GraphicsEffect Library

	Multimedia
	Playing Media
	Sound Effects
	Video Streams
	Capturing Images
	Advanced Techniques
	Summary

	Networking
	Serving UI via HTTP
	Templating
	HTTP Requests
	Local files
	REST API
	Authentication using OAuth
	Engin IO
	Web Sockets
	Summary

	Storage
	Settings
	Local Storage - SQL
	Other Storage APIs

	Dynamic QML
	Loading Components Dynamically
	Creating and Destroying Objects
	Tracking Dynamic Objects
	Summary

	JavaScript
	Browser/HTML vs QtQuick/QML
	The Language
	JS Objects
	Creating a JS Console

	Qt and C++
	A Boilerplate Application
	The QObject
	Build Systems
	Common Qt Classes
	Models in C++

	Extending QML with C++
	Understanding the QML Run-time
	Plugin Content
	Creating the plugin
	FileIO Implementation
	Using FileIO
	Summary

	Assets
	Offline Books
	Source Code Examples

