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Meet Qt 5

Autor da secção: jryannel [https://github.com/jryannel]


Nota

The source code of this chapter can be found in the assets folder.



This book shall provide you a walk through the different aspect of application development using Qt version 5.x. It focuses on the new Qt Quick technology but also provides necessary information of writing C++ back-ends and extension for Qt Quick.

This chapter provides a high level overview of Qt 5. It shows the different application models available for developers and a Qt 5 showcase application to get a sneak preview of things to come. Additionally the chapter aims to provide a wide overview of the Qt 5 content and how to get in touch with the makers of Qt 5.


Preface

History

Qt 4 has evolved since 2005 and provided a solid ground for thousands of applications and even full desktop and mobile systems. The usage patterns of computer users changed in the recent years. From stationary PCs towards portable notebook and nowadays mobile computers. The classical desktop is more and more replaced with mobile touch-based always connected screens. With it the desktop UX paradigms also changes. Where as in the past Windows UI has dominated the world we spend more time nowadays on other screens with another UI language.

Qt 4 was designed to satisfy the desktop world to have a coherent set of UI widgets available on all major platforms. The challenge for Qt users has changed today and it lies more to provide a touch-based user interface for a customer driven user interface and to enable modern user interface on all major desktop and mobile systems. Qt 4.7 started to introduce the Qt Quick technology which allows users to create a set of user interface components from simple elements to achieve a complete new UI, driven by customer demands.


Qt 5 Focus

Qt 5 is a complete refreshing of the very successful Qt 4 release. With Qt 4.8, the Qt 4 release is almost 7 years old. It’s time to make an amazing toolkit even more amazing. Qt 5 is focused on the following:


	Outstanding Graphics: Qt Quick 2 is based on OpenGL (ES) using a scene graph implementation. The recomposed graphics stack allows a new level of graphic effects combined with an ease of use never seen before in this field.

	Developer Productivity: QML and JavaScript are the primary means for UI creation. The back-end will be driven by C++. The split between JavaScript and C++ allows a fast iteration for front-end developers concentrating on creating beautiful user interfaces and back-end C++ developers concentrating on stability, performance and extending the runtime.

	Cross-platform portability: With the consolidated Qt Platform Abstraction, it is now possible to port Qt to a wider range of platforms easier and faster. Qt 5 is structured around the concept of Qt Essentials and Add-ons, which allows OS developer to focus on the essentials modules and leads to a smaller runtime altogether.

	Open Development: Qt is now a truly open-governance project hosted at qt.io [http://qt.io]. The development is open and community driven.








Qt 5 Introduction


Qt Quick

Qt Quick is the umbrella term for the user interface technology used in Qt 5. Qt Quick itself is a collection of several technologies:


	QML - Markup language for user interfaces

	JavaScript - The dynamic scripting language

	Qt C++ - The highly portable enhanced c++ library




[image: ../../_images/qt5_overview.png]


Similar to HTML, QML is a markup language. It is composed of tags called elements in Qt Quick enclosed in curly brackets Item {}. It was designed from the ground up for the creation of user interfaces, speed and easier reading for developers. The user interface can be enhanced using JavaScript code. Qt Quick is easily extendable with your own native functionality using Qt C++. In short the declarative UI is called the front-end and the native parts are called the back-end. This allows you to separate the computing intensive and native operation of your application from the user interface part.

In a typical project the front-end is developed in QML/JavaScript and the back-end code, which interfaces with the system and does the heavy lifting, is developed using Qt C++. This allows a natural split between the more design oriented developers and the functional developers. Typically the back-end is tested using Qt own unit testing framework and exported for the front-end developers to be used.




Digesting an User Interface

Let’s create a simple user interface using Qt Quick, which showcases some aspects of the QML language. At the end we will have a paper windmill with rotating blades.


[image: ../../_images/scene1.png]


We start with an empty document called main.qml. All QML files will have the ending .qml. As a markup language (like HTML) a QML document needs to have one and only one root element, which in our case is the Image element with a width and height based on the background image geometry:

import QtQuick 2.5

Image {
    id: root
    source: "images/background.png"
}





As QML does not make any restriction which element type is the root element we use an Image element with the source property set to our background image as the root element.


[image: ../../_images/background.png]



Nota

Each element has properties, e.g. an image has a width, height but also other properties like a source property.  The size of the image element is automatically deduced from the image size. Otherwise we would need to set the width and height property to some useful pixel values.

The most standard elements are located in the QtQuick module which we include in the first line with the import statement.

The id special property is optional and contains an identifier to reference this element later in other places in the document. Important: An id property cannot be changed after it has been set and it cannot be set during runtime. Using root as the id for the root-element is just a habit by the author and makes referencing the top-most element predictable in larger QML documents.



The foreground elements pole and pin wheel of our user interface are placed as separate images.


[image: ../../_images/pole.png]



[image: ../../_images/pinwheel.png]


The pole needs to be placed in the horizontal center of the background towards the bottom. And the pinwheel can be placed in the center of the background.

Normally your user interface will be composed of many different element types and not only image elements like in this example.

Image {
    id: root
    ...
    Image {
        id: pole
        anchors.horizontalCenter: parent.horizontalCenter
        anchors.bottom: parent.bottom
        source: "images/pole.png"
    }

    Image {
        id: wheel
        anchors.centerIn: parent
        source: "images/pinwheel.png"
    }
    ...
}





To place the pin wheel at the central location we use a complex property called anchor. Anchoring allows you to specify geometric relations between parent and sibling objects. E.g. Place me in the center of another element ( anchors.centerIn: parent ). There are left, right, top, bottom, centerIn, fill, verticalCenter and horizontalCenter relations on both ends. Sure, they need to match.  It does not make sense to anchor my left side to the top side of an element.

So we set the pinwheel to be centered in the parent our background.


Nota

Sometime you will need to make small adjustments on the exact centering. This would be possible with anchors.horizontalCenterOffset or with anchors.verticalCenterOffset. Similar adjustments properties are also available to all the other anchors. Please consult the documentation for a full list of anchors properties.




Nota

Placing an image as a child element of our root element (the Image element) shows an important concept of a declarative language. You describe the user interface in the order of layers and grouping, where the topmost layer (our rectangle) is drawn first and the child layers are drawn on top of it in the local coordinate system of the containing element.



To make the showcase a little bit more interesting, we would like to make the scene interactive. The idea is to rotate the wheel when the user pressed the mouse somewhere in the scene.

We use the MouseArea element and make it as big as our root element.

Image {
    id: root
    ...
    MouseArea {
        anchors.fill: parent
        onClicked: wheel.rotation += 90
    }
    ...
}





The mouse area emit signals when a user clicks inside it covered area. You can hook onto this signal overriding the onClicked function. In this case the reference the wheel image and change its rotation by +90 degree.


Nota

This works for every signal, the naming is on + SignalName in title cases. Also all properties emit a signal when their value changed. The naming is:


on + PropertyName + Changed


If a width property is changing you can observe it with onWidthChanged: print(width) for example.



Now the wheel will rotate, but it is still not fluid yet. The rotation property changes immediately. What we would like that the property changes by 90 degree over time. Now animations come into play. An animation defines how a property change is distributed over a duration. To enable this we use an animation type called property behavior. The Behaviour does specify an animation for a defined property for every change applied to that property. In short every time the property changes, the animation is run. This is only one of several ways of declaring an animation in QML.

Image {
    id: root
    Image {
        id: wheel
        Behavior on rotation {
            NumberAnimation {
                duration: 250
            }
        }
    }
}





Now whenever the property rotation of the wheel changes it will be animated using a NumberAnimation with a duration of 250 ms. So each 90 degree turn will take 250 ms.


[image: ../../_images/scene2.png]



Nota

You will not actually see the wheel blurred. This is just to indicate the rotation. But a blurred wheel is in the assets folder. Maybe you want to try to use that.



Now the wheel looks already much better. I hope this has given you a short idea of how Qt Quick programming works.






Qt Building Blocks

Qt 5 consists of a large amount of modules. A module in general is a library for the developer to use. Some modules are mandatory for a Qt enabled platform. They form a set called Qt Essentials Modules. Many modules are optional and form the Qt Add-On Modules. It’s expected that the majority of developers will not have the need to use them, but it’s good to know them as they provide invaluable solutions to common challenges.


Qt Modules

The Qt Essentials modules are mandatory for a Qt enabled platform. They offer the foundation to develop a modern Qt 5 Application using Qt Quick 2.

Core-Essential Modules

The minimal set of Qt 5 modules to start QML programming.







	Module
	Description




	Qt Core
	Core non-graphical classes used by other modules


	Qt GUI
	Base classes for graphical user interface (GUI) components. Includes OpenGL.


	Qt Multimedia
	Classes for audio, video, radio and camera functionality.


	Qt Network
	Classes to make network programming easier and more portable.


	Qt QML
	Classes for QML and JavaScript languages.


	Qt Quick
	declarative framework for building highly dynamic applications with custom user interfaces.


	Qt SQL
	Classes for database integration using SQL.


	Qt Test
	Classes for unit testing Qt applications and libraries.


	Qt WebKit
	Classes for a WebKit2 based implementation and a new QML API. See also Qt WebKit Widgets in the add-on modules.


	Qt WebKit Widgets
	WebKit1 and QWidget-based classes from Qt 4.


	Qt Widgets
	Classes to extend Qt GUI with C++ widgets.





[image: digraph essentials { QtGui -> QtCore QtNetwork ->QtCore QtMultimedia ->QtGui QtQml -> QtCore QtQuick -> QtQml QtSql -> QtCore }]
Qt Addon Modules

Besides the essential modules, Qt offers additional modules for software developers, which are not part of the release. Here is a short list of add-on modules available.


	Qt 3D - A set of APIs to make 3D graphics programming easy and declarative.

	Qt Bluetooth - C++ and QML APIs for platforms using Bluetooth wireless technology.

	Qt Contacts - C++ and QML APIs for accessing addressbooks / contact databases

	Qt Location - Provides location positioning, mapping, navigation and place search via QML and C++ interfaces. NMEA backend for positioning

	Qt Organizer - C++ and QML APIs for accessing organizer events (todos, events, etc.)

	Qt Publish and Subscribe

	Qt Sensors - Access to sensors via QML and C++ interfaces.

	Qt Service Framework -  Enables applications to read, navigate and subscribe to change notifications.

	Qt System Info - Discover system related information and capabilities.

	Qt Versit - Support for vCard and iCalendar formats

	Qt Wayland - Linux only. Includes Qt Compositor API (server), and Wayland platform plugin (clients)

	Qt Feedback - Tactile and audio feedback to user actions.

	Qt JSON DB - A no-SQL object store for Qt.




Nota

As these modules are not part of the release the state differ between modules, depending how many contributors are active and how well it’s get tested.






Supported Platforms

Qt supports a variety of platforms. All major desktop and embedded platforms are supported. Through the Qt Application Abstraction, nowadays it’s easier to port Qt over to your own platform if required.

Testing Qt 5 on a platform is time consuming. A sub-set of platforms was selected by the Qt Project to build the reference platforms set. These platforms are thoroughly tested through the system testing to ensure the best quality. Mind you though: no code is error free.






Qt Project

From the Qt Project wiki [http://wiki.qt.io/]:

“The Qt Project is a meritocratic consensus-based community interested in Qt. Anyone who shares that interest can join the community, participate in its decision making processes, and contribute to Qt’s development.”

The Qt Project is an organisation which developes the open-source part of the Qt further. It forms the base for other users to contribute. The biggest contributor is DIGIA, which holds also the comercial rights to Qt.

Qt has an open-source aspect and a comercial aspect for companies. The comercial aspect is for companies which can not or will not comply with the open-source licenses. Without the comercial aspect these companies would not be able to use Qt and it would not allow DIGIA to contribute so much code to the Qt Project.

There are many companies world-wide, which make their living out of consultancy and product development using Qt on the various platforms. There are many open-source projects and open-source developers, which rely on Qt as their major development library. It feels good to be part of this vibrant community and to work with this awesome tools and libraries. Does it make you a better person? Maybe:-)

Contribute here: http://wiki.qt.io/
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Get Started

Autor da secção: jryannel [https://github.com/jryannel]

This chapter will introduce you to developing with Qt 5. We will show you how to install the Qt SDK and how you can create as well as run a simple hello world application using the Qt Creator IDE.


Nota

The source code of this chapter can be found in the assets folder.




Installing Qt 5 SDK

The Qt SDK include the tools needed to build desktop or embedded applications. The latest version can be grabbed from the Qt-Company [http://qt.io] homepage. There are offline and online installer. The author personally prefers the online installer package as it allows you to install and update several Qt releases. This is would be the recommended way to start. The SDK itself has a maintenance tool which will allow you to update the SDK to the latest version.

The Qt SDK is easy to install and comes with its own IDE for rapid development called Qt Creator. The IDE is a highly productive environment for Qt coding and recommended to all readers. Many developers use Qt from the command line and you are free to use a code editor of your choice.

When installing the SDK, you should select the default option and ensure that Qt 5.x is enabled. Then you are ready to go.




Hello World

To test your installation, we will create a small hello world application. Please open Qt Creator and create a Qt Quick UI Project ( File ‣ New File or Project ‣ Qt Quick Project ‣ Qt Quick UI ) and name the project HelloWorld.


Nota

The Qt Creator IDE allows you to create various types of applications. If not otherwise stated, we always use a Qt Quick UI project.




Dica

A typical Qt Quick application is made out of a runtime called the QmlEngine which loads the initial QML code. The developer can register C++ types with the runtime to interface with the native code. These C++ types can also be bundled into a plugin and then dynamically loaded using an import statement. The qmlscene and qml tool are pre-made runtimes, which can be used directly. For the beginning we will not cover the native side of development and focus only on the QML aspects of Qt 5.



Qt Creator will create several files for you. The HelloWorld.qmlproject file is the project file where the relevant project configuration is stored. This file is managed by Qt Creator so don’t edit.

Another file, HelloWorld.qml, is our application code. Open it and try to guess what the application does and then continue to read on.

// HelloWorld.qml

import QtQuick 2.5

Rectangle {
    width: 360
    height: 360
    Text {
        anchors.centerIn: parent
        text: "Hello World"
    }
    MouseArea {
        anchors.fill: parent
        onClicked: {
            Qt.quit();
        }
    }
}





The HelloWord.qml is written in the QML language. We will discuss the QML language in more depth in the next chapter. QML describes the user interface as a tree of hierarchical elements. In this case, a rectangle of 360 x 360 pixels with a centered text reading “Hello World”. To capture user clicks a mouse area spans the whole rectangle and when the user clicks it, the application quits.

To run the application on your own, please press the [image: creatorrun] Run tool on the left side or select Build ‣ Run from the menu.

Qt Creator will start the qmlscene and passes the QML document as the first argument. The qmlscene will parse the document and launch the user interface. Now you should see something like this:


[image: ../../_images/example.png]


Qt 5 seems to be working and we are ready to continue.


Dica

If you are a system integrator, you’ll want to have Qt SDK installed to get the latest stable Qt release as well as a Qt version compiled from source code for your specific device target.




Build from Scratch

If you’d like to build Qt 5 from the command line, you’ll first need to grab a copy of the code repository and build it.

git clone git://gitorious.org/qt/qt5.git
cd qt5
./init-repository
./configure -prefix $PWD/qtbase -opensource
make -j4





After a successful compilation and 2 cups of coffee, Qt 5 will be available in the qtbase folder. Any beverage will suffice, however, we suggest coffee for best results.

If you want to test your compilation, simply start qtbase/bin/qmlscene and select a Qt Quick example to run it ...or follow just us into the next chapter.

To test your installation, we will create a small hello world application. Please create a simple example.qml file using your favorite text editor and paste the following content inside:

// HelloWorld.qml

import QtQuick 2.5

Rectangle {
    width: 360
    height: 360
    Text {
        anchors.centerIn: parent
        text: "Greetings from Qt 5"
    }
    MouseArea {
        anchors.fill: parent
        onClicked: {
            Qt.quit();
        }
    }
}





You can run now the example by using the default runtime which comes with Qt 5:

$ qtbase/bin/qmlscene










Application Types

This section is a run through of the different possible application types someone could write with Qt 5. It’s not limited to the presented selection but it should give the reader a better idea about what can be done with Qt 5 in general.


Console Application

A console application does not provide any graphical user interface and will normally be called as part of a system service or from the command line. Qt 5 comes with a series of ready-made components which help you to create console cross platform applications very efficiently. For example the networking file APIs. Also string handling and, since Qt 5.1, efficient command line parser. As Qt is a high-level API on top of C++, you get programming speed paired with execution speed. Don’t think of Qt as being just a UI toolkit – it has so much more to offer.

String Handling

In the first example we demonstrate how someone could very simply add 2 constant strings. This is not a very useful application but it gives you an idea of what a native C++ application, without an event loop, could look like.

// module or class includes
#include <QtCore>

// text stream is text-codec aware
QTextStream cout(stdout, QIODevice::WriteOnly);

int main(int argc, char** argv)
{
    // avoid compiler warnings
    Q_UNUSED(argc)
    Q_UNUSED(argv)
    QString s1("Paris");
    QString s2("London");
    // string concatenation
    QString s = s1 + " " + s2 + "!";
    cout << s << endl;
}





Container Classes

This example adds a list and list iteration to the application. Qt comes with a large collections of container classes which are easy to use and use the same API paradigms as the rest of Qt classes.

QString s1("Hello");
QString s2("Qt");
QList<QString> list;
// stream into containers
list <<  s1 << s2;
// Java and STL like iterators
QListIterator<QString> iter(list);
while(iter.hasNext()) {
    cout << iter.next();
    if(iter.hasNext()) {
        cout << " ";
    }
}
cout << "!" << endl;





Here we show some advanced list function, which allow you to join a list of strings into one string. This is very handy when you need to proceed line based text input. The inverse (string to string-list) is also possible using QString::split() function.

QString s1("Hello");
QString s2("Qt");
// convenient container classes
QStringList list;
list <<  s1 << s2;
// join strings
QString s = list.join(" ") + "!";
cout << s << endl;





File IO

In the next snippet we read a CSV file from the local directory and loop over the rows to extract the cells from each row. Doing this we get the table data from the CSV file in ca. 20 lines of code. File reading gives us just a byte stream, to be able to convert it into a valid Unicode text we need to use the text stream and pass in the file as a lower-level stream. For writing CSV files you would just need to open the file in the write mode and pipe the lines into the text stream.

QList<QStringList> data;
// file operations
QFile file("sample.csv");
if(file.open(QIODevice::ReadOnly)) {
    QTextStream stream(&file);
    // loop forever macro
    forever {
        QString line = stream.readLine();
        // test for null string 'String()'
        if(line.isNull()) {
            break;
        }
        // test for empty string 'QString("")'
        if(line.isEmpty()) {
            continue;
        }
        QStringList row;
        // for each loop to iterate over containers
        foreach(const QString& cell, line.split(",")) {
            row.append(cell.trimmed());
        }
        data.append(row);
    }
}
// No cleanup necessary.





This concludes our section about console based application with Qt.




Widget Application

Console based applications are very handy but sometimes you need to have a UI to show. In addition, UI-based applications will likely need a back-end to read/write files, communicate over the network, or keep data in a container.

In this first snippet for widget-based applications we do as little as needed to create a window and show it. A widget without a parent in the Qt world is a window. We use the scoped pointer to ensure the widget is deleted when the scoped pointer goes out of scope. The application object encapsulates the Qt runtime and with the exec() call we start the event loop. From there on the application reacts only on events triggered by mouse or keyboard or other event providers like networking or file IO. The application will only exit when the event loop is exited.  This is done by calling quit() on the application or by closing the window.

When you run the code you will see a window with the size of 240 x 120 pixel. That’s all.

#include <QtGui>

int main(int argc, char** argv)
{
    QApplication app(argc, argv);
    QScopedPointer<QWidget> widget(new CustomWidget());
    widget->resize(240, 120);
    widget->show();
    return app.exec();
}





Custom Widgets

When you work on user interfaces, you will need to create custom made widgets. Typically a widget is a window area filled with painting calls. Additional the widget has internal knowledge of how to handle keyboard or mouse input and how to react to external triggers. To do this in Qt we need to derive from QWidget and overwrite several functions for painting and event handling.

#ifndef CUSTOMWIDGET_H
#define CUSTOMWIDGET_H

#include <QtWidgets>

class CustomWidget : public QWidget
{
    Q_OBJECT
public:
    explicit CustomWidget(QWidget *parent = 0);
    void paintEvent(QPaintEvent *event);
    void mousePressEvent(QMouseEvent *event);
    void mouseMoveEvent(QMouseEvent *event);
private:
    QPoint m_lastPos;
};

#endif // CUSTOMWIDGET_H





In the implementation, we draw a small border on our widget and a small rectangle on the last mouse position. This is very typical for a low-level custom widget. Mouse or keyboard events change the internal state of the widget and trigger a painting update. We don’t want to go into to much detail into this code, but it is good to know that you have the ability. Qt comes with a large set of ready-made desktop widgets, so that the probability is high that you don’t have to do this.

#include "customwidget.h"

CustomWidget::CustomWidget(QWidget *parent) :
    QWidget(parent)
{
}

void CustomWidget::paintEvent(QPaintEvent *)
{
    QPainter painter(this);
    QRect r1 = rect().adjusted(10,10,-10,-10);
    painter.setPen(QColor("#33B5E5"));
    painter.drawRect(r1);

    QRect r2(QPoint(0,0),QSize(40,40));
    if(m_lastPos.isNull()) {
        r2.moveCenter(r1.center());
    } else {
        r2.moveCenter(m_lastPos);
    }
    painter.fillRect(r2, QColor("#FFBB33"));
}

void CustomWidget::mousePressEvent(QMouseEvent *event)
{
    m_lastPos = event->pos();
    update();
}

void CustomWidget::mouseMoveEvent(QMouseEvent *event)
{
    m_lastPos = event->pos();
    update();
}





Desktop Widgets

The Qt developers have done all of this for you already and provide a set of desktop widgets, which will look native on different operating systems. Your job is then to arrange these different widgets in a widget container into larger panels. A widget in Qt can also be a container for other widgets. This is accomplished by the parent-child relationship. This mean we need to make our ready-made widgets like buttons, check boxes, radio button but also lists and grids a child of another widget. One way to accomplish this is displayed below.

Here is the header file for a so called widget container.

class CustomWidget : public QWidget
{
    Q_OBJECT
public:
    explicit CustomWidget(QWidget *parent = 0);
private slots:
    void itemClicked(QListWidgetItem* item);
    void updateItem();
private:
    QListWidget *m_widget;
    QLineEdit *m_edit;
    QPushButton *m_button;
};





In the implementation, we use layouts to better arrange our widgets. Layout managers re-layout the widgets according to some size policies when the container widget is re-sized. In this example we have a list, a line edit, and a button arranged vertically to allow to edit a list of cities. We use Qt’s signal and slots to connect sender and receiver objects.

CustomWidget::CustomWidget(QWidget *parent) :
    QWidget(parent)
{
    QVBoxLayout *layout = new QVBoxLayout(this);
    m_widget = new QListWidget(this);
    layout->addWidget(m_widget);

    m_edit = new QLineEdit(this);
    layout->addWidget(m_edit);

    m_button = new QPushButton("Quit", this);
    layout->addWidget(m_button);
    setLayout(layout);

    QStringList cities;
    cities << "Paris" << "London" << "Munich";
    foreach(const QString& city, cities) {
        m_widget->addItem(city);
    }

    connect(m_widget, SIGNAL(itemClicked(QListWidgetItem*)), this, SLOT(itemClicked(QListWidgetItem*)));
    connect(m_edit, SIGNAL(editingFinished()), this, SLOT(updateItem()));
    connect(m_button, SIGNAL(clicked()), qApp, SLOT(quit()));
}

void CustomWidget::itemClicked(QListWidgetItem *item)
{
    Q_ASSERT(item);
    m_edit->setText(item->text());
}

void CustomWidget::updateItem()
{
    QListWidgetItem* item = m_widget->currentItem();
    if(item) {
        item->setText(m_edit->text());
    }
}





Drawing Shapes

Some problems are better visualized. If the problem at hand looks faintly like geometrical objects, qt graphics view is a good candidate. A graphics view arranges simple geometrical shapes on a scene.  The user can interact with these shapes or they are positioned using an algorithm. To populate a graphics view you need a graphics view and a graphics scene. The scene is attached to the view and populates with graphics items.
Here is a short example. First the header file with the declaration of the view and scene.

class CustomWidgetV2 : public QWidget
{
    Q_OBJECT
public:
    explicit CustomWidgetV2(QWidget *parent = 0);
private:
    QGraphicsView *m_view;
    QGraphicsScene *m_scene;

};





In the implementation the scene gets attached to the view first. The view is a widget and get arranged in our container widget. At the end we add a small rectangle to the scene, which then is rendered on the view.

#include "customwidgetv2.h"

CustomWidget::CustomWidget(QWidget *parent) :
    QWidget(parent)
{
    m_view = new QGraphicsView(this);
    m_scene = new QGraphicsScene(this);
    m_view->setScene(m_scene);

    QVBoxLayout *layout = new QVBoxLayout(this);
    layout->setMargin(0);
    layout->addWidget(m_view);
    setLayout(layout);

    QGraphicsItem* rect1 = m_scene->addRect(0,0, 40, 40, Qt::NoPen, QColor("#FFBB33"));
    rect1->setFlags(QGraphicsItem::ItemIsFocusable|QGraphicsItem::ItemIsMovable);
}








Adapting Data

Up to now we have mostly covered basic data types and how to use widgets and graphic views. Often in your application you will need larger amount of structured data, which also has to be persistently stored. The data also needs to be displayed. For this Qt uses models. A simple model is the string list model, which gets filled with strings and then attached to a list view.

m_view = new QListView(this);
m_model = new QStringListModel(this);
view->setModel(m_model);

QList<QString> cities;
cities << "Munich" << "Paris" << "London";
model->setStringList(cities);





Another popular way to store or retrieve data is SQL. Qt comes with SQLite embedded and also has support for other database engines (MySQL, PostgresSQL, ...). First you need to create your database using a schema, like this:

CREATE TABLE city (name TEXT, country TEXT);
INSERT INTO city value ("Munich", "Germany");
INSERT INTO city value ("Paris", "France");
INSERT INTO city value ("London", "United Kingdom");





To use sql we need to add the sql module to our .pro file

QT += sql





And then we can open our database using C++. First we need to retrieve a new database object for the specified database engine. With this database object we open the database. For SQLite it’s enough to specify the path to the database file. Qt provides some high-level database model, one of them is the table model, which uses a table identifier and an option where clause to select the data. The resulting model can be attached to a list view as the other model before.

QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");
db.setDatabaseName('cities.db');
if(!db.open()) {
    qFatal("unable to open database");
}

m_model = QSqlTableModel(this);
m_model->setTable("city");
m_model->setHeaderData(0, Qt::Horizontal, "City");
m_model->setHeaderData(1, Qt::Horizontal, "Country");

view->setModel(m_model);
m_model->select();





For higher level of model operations Qt provides a sort file proxy model, which allows you in the basic form to sort and filter another model.

QSortFilterProxyModel* proxy = new QSortFilterProxyModel(this);
proxy->setSourceModel(m_model);
view->setModel(proxy);
view->setSortingEnabled(true);





Filtering is done based on the column to be filters and a string as filter argument.

proxy->setFilterKeyColumn(0);
proxy->setFilterCaseSensitive(Qt::CaseInsensitive);
proxy->setFilterFixedString(QString)





The filter proxy model is much more powerful than demonstrated here. For now it is enough to remember its exists.


Nota

This was an overview of the different kind of classical application you could develop with Qt 5. The desktop is moving and soon the mobile devices will be our desktop of tomorrow. Mobile devices have a different user interface design. They are much more simplistic than desktop applications. They do one thing and they do simply and focused. Animations are an important part of the experience. A user interface needs to feel alive and fluent. The traditional Qt technologies are not well suited for this market.

Coming next: Qt Quick for the rescue.






Qt Quick Application

There is an inherent conflict in modern software development. The user interface is moving much faster than our back-end services. In a traditional technology you develop the so called front-end at the same pace as the back-end. This results in conflicts when customers want to change the user interface during a project, or develop the idea of an user interface during the project. Agile projects, require agile methods.

Qt Quick provides a declarative environment where your user interface (the front-end) is declared like HTML and your back-end is in native C++ code. This allows you to get the best of both worlds.

This is a simple Qt Quick UI below

import QtQuick 2.5

Rectangle {
    width: 240; height: 1230
    Rectangle {
        width: 40; height: 40
        anchors.centerIn: parent
        color: '#FFBB33'
    }
}





The declaration language is called QML and it needs a runtime to execute in. Qt provides a standard runtime called qmlscene but it’s also not so difficult to write a custom runtime. For this we need a quick view and set the main QML document as source. The only thing left is to show the user interface.

QQuickView* view = new QQuickView();
QUrl source = QUrl::fromLocalFile("main.qml");
view->setSource(source);
view.show();





Coming back to our earlier examples. In one example we used a C++ city model. It would be great if we could use this model inside our declarative QML code.

To enable this, we first code our front-end to see how we would want to use a city model. In this case the front-end expects a object named cityModel which we can use inside a list view.

import QtQuick 2.5

Rectangle {
    width: 240; height: 120
    ListView {
        width: 180; height: 120
        anchors.centerIn: parent
        model: cityModel
        delegate: Text { text: model.city }
    }
}





To enable the cityModel we can mostly re-use our previous model and add a context property to our root context (the root context is the other root-element in the main document)

m_model = QSqlTableModel(this);
... // some magic code
QHash<int, QByteArray> roles;
roles[Qt::UserRole+1] = "city";
roles[Qt::UserRole+2] = "country";
m_model->setRoleNames(roles);
view->rootContext()->setContextProperty("cityModel", m_model);






Dica

This is not completely correct, as the SQL table model contains the data in columns and a QML model expects the data as roles. So there needs to be a mapping between columns and roles. Please see QML and QSqlTableModel [http://wiki.qt.io/QML_and_QSqlTableModel] wiki page.








Summary

We have seen how to install the Qt SDK and how to create our first application. Then we walked you through the different application types to give you an overview of Qt, showing off some features Qt offers for application development. I hope you got a good impression that Qt is a very rich user interface toolkit and offers everything an application developer can hope for and more. Still, Qt does not lock you into specific libraries, as you always can use other libraries or extend Qt yourself. It is also rich when it comes to supporting different application models: console, classical desktop user interface and touch user interface.
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Qt Creator IDE

Autor da secção: jryannel [https://github.com/jryannel]

Qt Creator is the default integrated development environment for Qt. It’s written from Qt developers for Qt developers. The IDE is available on all major desktop platforms, e.g. Windows/Mac/Linux. We have already seen customers using Qt Creator on an embedded device. Qt Creator has a lean efficient user interface and it really shines in making the developer productive. Qt Creator can be used to run your Qt Quick user interface but also to compile c++ code and this for your host system or for another device using a cross-compiler.


[image: ../../_images/qtcreator-screenshots.png]



Nota

The source code of this chapter can be found in the assets folder.




The User Interface

When starting Qt Creator you are greeted by the Welcome screen. There you will find the most important hints on how to continue inside Qt Creator and your recently used projects. You will also see the sessions list, which might be empty for you. A session is a collection of projects stored for your reference. This comes really handy when you have several customers with larger projects.

On the left side you will see the mode-selector. The mode selectors contain typical steps from your work flow.


	Welcome mode: For your orientation.

	Edit mode: Focus on the code

	Design mode: Focus on the UI design

	Debug mode: Retrieve information about a running application

	Projects mode: Modify your projects run and build configuration

	Analyze mode: For detecting memory leaks and profiling

	Help mode: Easy access to the Qt documentation



Below the mode-selectors you will find the actual project-configuration selector and the run/debug


[image: ../../_images/creator-welcome.png]


Most of the time you will be in the edit mode with the code-editor in the central panel. From time to time, you will visit the Projects mode when you need to configure your project. And then you press Run. Qt Creator is smart enough to ensure you project is fully built before running it.

In the bottom are the output panes for issues, application messages, compile messages, and other messages.




Registering your Qt Kit

The Qt Kit is probably the most difficult aspect when it comes for working with Qt Creator initially. A Qt Kit is a set of a Qt version, compiler and device and some other settings. It is used to uniquely identify the combination of tools for your project build. A typical kit for the desktop would contain a GCC compiler and a Qt version (e.g. Qt 5.1.1) and a device (“Desktop”). After you have created a project you need to assign a kit to a project before qt creator can build the project. Before you are able to create a kit first you need to have a compiler installed and have a Qt version registered. A Qt version is registered by specifying the path to the qmake executable. Qt Creator then queries qmake for information required to identify the Qt version.

Adding a kit and registering a Qt version is done in the Settings ‣ Build & Run entry. There you can also see which compilers are registered.


Nota

Please first check if your Qt Creator has already the correct Qt version registered and then ensure a Kit for your combination of compiler and Qt and device is specified. You can not build a project without a kit.






Managing Projects

Qt Creator manages your source code in projects. You can create a new project by using File ‣ New File or Project. When you create a project you have many choices of application templates. Qt Creator is capable of creating desktop, mobile applications. Application which use Widgets or Qt Quick or Qt Quick and controls or even bare-bone projects. Also project for HTML5 and python are supported. For a beginner it is difficult to choose, so we pick three project types for you.


	Applications / Qt Quick 2.0 UI: This will create a QML/JS only project for you, without any C++ code. Take this if you want to sketch a new user interface or plan to create a modern UI application where the native parts are delivered by plug-ins.

	Libraries / Qt Quick 2.0 Extension Plug-in: Use this wizard to create a stub for a plug-in for your Qt Quick UI. A plug-in is used to extend Qt Quick with native elements.

	Other Project / Empty Qt Project: A bare-bone empty project. Take this if you want to code your application with c++ from scratch. Be aware you need to know what you are doing here.




Nota

During the first parts of the book we will mainly use the Qt Quick 2.0 UI project type. Later to describe some c++ aspects we will use the Empty-Qt-Project type or something similar. For extending Qt Quick with our own native plug-ins we will use the Qt Quick 2.0 Extension Plug-in wizard type.






Using the Editor

When you open a project or you just created a new project Qt Creator will switch to the edit mode. You should see on the left your project files and in the center area the code editor. Selecting files on the left will open them in the editor. The editor provides syntax highlighting, code-completion and quick-fixes. Also it supports several commands for code refactoring. When working with the editor you will have the feeling that everything reacts immediately. This is thanks to the developers of Qt Creator which made the tool feel really snappy.


[image: ../../_images/creator-editor.png]





Locator

The locator is a central component inside Qt Creator. It allows developers to navigate fast to specific locations inside the source code or inside the help. To open the locator press Ctrl+K.


[image: ../../_images/locator.png]


A pop-up is coming from the bottom left and shows a list of options. If you just search a file inside your project just hit the first letter from the file name. The locator also accepts wild-cards, so *main.qml will also work. Otherwise you can also prefix your search to search for specific content type.


[image: ../../_images/creator-locator.png]


Please try it out. For example to open the help for the QML element Rectangle open the locator and type ? rectangle. While you type the locator will update the suggestions until you found the reference you are looking for.




Debugging

Qt Creator comes with C++ and QML debugging support.


Nota

Hmm, I just realized I have not used debugging a lot. I hope this is a good sign. Need to ask someone to help me out here. In the meantime have a look at the Qt Creator documentation [http://http://doc.qt.io/qtcreator/index.html].






Shortcuts

Shortcuts are the difference between a nice to use system and a professional system. As a professional you spend hundred of hours in front of your application. Each shortcut which makes your work-flow faster counts. Luckily the developers of Qt Creator think the same and have added literally hundreds of shortcuts to the application.

To get started we have collection some basic shortcuts (in Windows notation):


	Ctrl+B - Build project

	Ctrl+R - Run Project

	Ctrl+Tab - Switch between open documents

	Ctrl+K - Open Locator

	Esc - Go back (hit several times and you are back in the editor)

	F2 - Follow Symbol under cursor

	F4 - Switch between header and source (only useful for c++ code)



List of Qt Creator shortcuts [http://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html] from the documentation.


Nota

You can edit the shortcuts from inside creator using the settings dialog.


[image: ../../_images/creator-edit-shortcuts.png]
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Quick Starter

Autor da secção: jryannel [https://github.com/jryannel]


Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



This chapter provides an overview of QML, the declarative user interface language used in Qt 5. We will discuss the QML syntax, which is a tree of elements, followed by an overview of the most important basic elements. Later we will briefly look at how to create our own elements, called components and how to transform elements using property manipulations. Towards the end we will look how to arrange elements together in a layout and finally have a look at elements where the user can provide input.


QML Syntax

QML is a declarative language used to describe the user interface of your application. It breaks down the user interface into smaller elements, which can be combined to components. QML describes the look and the behavior of these user interface elements. This user interface description can be enriched with JavaScript code to provide simple but also more complex logic. In this perspective it follows the HTML-JavaScript pattern but QML is designed from the ground up to describe user interfaces not text-documents.

In its simplest way QML is a hierarchy of elements. Child elements inherit the coordinate system from the parent. An x,y coordinate is always relative to the parent.


[image: ../../_images/scene3.png]


Let’s start with a simple example of a QML file to explain the different syntax.

// RectangleExample.qml

import QtQuick 2.5

// The root element is the Rectangle
Rectangle {
    // name this element root
    id: root

    // properties: <name>: <value>
    width: 120; height: 240

    // color property
    color: "#4A4A4A"

    // Declare a nested element (child of root)
    Image {
        id: triangle

        // reference the parent
        x: (parent.width - width)/2; y: 40

        source: 'assets/triangle_red.png'
    }

    // Another child of root
    Text {
        // un-named element

        // reference element by id
        y: triangle.y + triangle.height + 20

        // reference root element
        width: root.width

        color: 'white'
        horizontalAlignment: Text.AlignHCenter
        text: 'Triangle'
    }
}






	The import statement imports a module in a specific version. In general you always want to import QtQuick 2.0 as your initial set of elements

	Comments can be made using // for single line comments or /* */ for multi-line comments. Just like in C/C++ and JavaScript

	Every QML file needs to have exactly one root element, like HTML

	An element is declared by its type followed by { }

	Elements can have properties, they are in the form name : value

	Arbitrary elements inside a QML document can be accessed by using their id (an unquoted identifier)

	Elements can be nested, meaning a parent element can have child elements. The parent element can be accessed using the parent keyword




Dica

Often you want to access a particular element by id or a parent element using the parent keyword. So it’s good practice to name your root element “root” using id: root. Then you don’t have to think about how the root element is named in your QML document.




Dica

You can run the example using the Qt Quick runtime from the command line from your OS like this:

$ $QTDIR/bin/qmlscene RectangleExample.qml





Where you need to replace the $QTDIR to the path to your Qt installation. The qmlscene executable initializes the Qt Quick runtime and interprets the provided QML file.

In Qt Creator you can open the corresponding project file and run the document RectangleExample.qml.




Properties

Elements are declared by using their element name but are defined by using their properties or by creating custom properties. A property is a simple key-value pair, e.g. width : 100, text: 'Greetings', color: '#FF0000'. A property has a well-defined type and can have an initial value.

    Text {
        // (1) identifier
        id: thisLabel

        // (2) set x- and y-position
        x: 24; y: 16

        // (3) bind height to 2 * width
        height: 2 * width

        // (4) custom property
        property int times: 24

        // (5) property alias
        property alias anotherTimes: thisLabel.times

        // (6) set text appended by value
        text: "Greetings " + times

        // (7) font is a grouped property
        font.family: "Ubuntu"
        font.pixelSize: 24

        // (8) KeyNavigation is an attached property
        KeyNavigation.tab: otherLabel

        // (9) signal handler for property changes
        onHeightChanged: console.log('height:', height)

        // focus is need to receive key events
        focus: true

        // change color based on focus value
        color: focus?"red":"black"
    }





Let’s go through the different features of properties:


	id is a very special property-like value, it is used to reference elements inside a QML file (called “document” in QML). The id is not a string type but rather an identifier and part of the QML syntax. An id needs to be unique inside a document and it can’t be re-set to a different value, nor may it be queried. (It behaves more like a pointer in the C++ world.)



	A property can be set to a value, depending on its type. If no value is given for a property, an initial value will be chosen. You need to consult the documentation of the particular element for more information about the initial value of a property.



	A property can depend on one or many other properties. This is called binding. A bound property is updated, when its dependent properties change. It works like a contract, in this case the height should always be two times the width.



	Adding own properties to an element is done using the property qualifier followed by the type, the name and the optional initial value (property <type> <name> : <value>). If no initial value is given a system initial value is chosen.


Nota

You can also declare one property to be the default property if no property name is given by prepending the property declaration with the default keyword. This is used for example when you add child elements, the child elements are added automatically to the default property children of type list if they are visible elements.





	Another important way of declaring properties is using the alias keyword (property alias <name> : <reference>). The alias keyword allows us to forward a property of an object or an object itself from within the type to an outer scope. We will use this technique later when defining components to export the inner properties or element ids to the root level. A property alias does not need a type, it uses the type of the referenced property or object.



	The text property depends on the custom property times of type int. The int based value is automatically converted to a string type. The expression itself is another example of binding and results into the text being updated every time the times property changes.



	Some properties are grouped properties. This feature is used when a property is more structured and related properties should be grouped together. Another way of writing grouped properties is font { family: "Ubuntu"; pixelSize: 24 }.



	Some properties are attached to the element itself. This is done for global relevant elements which appear only once in the application (e.g. keyboard input). The writing is <Element>.<property>: <value>.



	For every property you can provide a signal handler. This handler is called after the property changes. For example here we want to be notified whenever the height changes and use the built-in console to log a message to the system.






Aviso

An element id should only be used to reference elements inside your document (e.g. the current file). QML provides a mechanism called dynamic-scoping where later loaded documents overwrite the element id’s from earlier loaded documents. This makes it possible to reference element id’s from earlier loaded documents, if they are not yet overwritten. It’s like creating global variables. Unfortunately this frequently leads to really bad code in practice, where the program depends on the order of execution. Unfortunately this can’t be turned off. Please only use this with care or even better don’t use this mechanism at all. It’s better to export the element you want to provide to the outside world using properties on the root element of your document.






Scripting

QML and JavaScript (also known as ECMAScript) are best friends. In the JavaScript chapter we will go into more detail on this symbiosis. Currently we just want to make you aware about this relationship.

    Text {
        id: label

        x: 24; y: 24

        // custom counter property for space presses
        property int spacePresses: 0

        text: "Space pressed: " + spacePresses + " times"

        // (1) handler for text changes
        onTextChanged: console.log("text changed to:", text)

        // need focus to receive key events
        focus: true

        // (2) handler with some JS
        Keys.onSpacePressed: {
            increment()
        }

        // clear the text on escape
        Keys.onEscapePressed: {
            label.text = ''
        }

        // (3) a JS function
        function increment() {
            spacePresses = spacePresses + 1
        }
    }






	The text changed handler onTextChanged prints the current text every-time the text changed due to a space-bar key pressed

	When the text element receives the space-bar key (because the user pressed the space-bar on the keyboard) we call a JavaScript function increment().

	Definition of a JavaScript function in the form of function <name>(<parameters>) { ... }, which increments our counter spacePressed. Every time spacePressed is incremented, bound properties will also be updated.




Nota

The difference between the QML : (binding) and the JavaScript = (assignment) is, that the binding is a contract and keeps true over the lifetime of the binding, whereas the JavaScript assignment (=) is a one time value assignment.
The lifetime of a binding ends, when a new binding is set to the property or even when a JavaScript value is assigned is to the property. For example a key handler setting the text property to an empty string would destroy our increment display:

Keys.onEscapePressed: {
    label.text = ''
}





After pressing escape, pressing the space-bar will not update the display anymore as the previous binding of the text property (text: “Space pressed: ” + spacePresses + ” times”) was destroyed.

When you have conflicting strategies to change a property as in this case (text updated by a change to a property increment via a binding and text cleared by a JavaScript assignment) then you can’t use bindings! You need to use assignment on both property change paths as the binding will be destroyed by the assignment (broken contract!).








Basic Elements

Elements can be grouped into visual and non-visual elements. A visual element (like the Rectangle) has a geometry and normally presents an area on the screen. A non-visual element (like a Timer) provides general functionality, normally used to manipulate the visual elements.

Currently, we will focus on the fundamental visual elements, such as Item, Rectangle, Text, Image and MouseArea.


Item Element

Item is the base element for all visual elements as such all other visual elements inherit from Item. It doesn’t paint anything by itself but defines all properties which are common across all visual elements:







	Group
	Properties




	Geometry
	x and y to define the top-left position, width and height for the expand of the element and also the z stacking order to lift elements up or down from their natural ordering


	Layout handling
	anchors (left, right, top, bottom, vertical and horizontal center) to position elements relative to other elements with their margins


	Key handling
	attached Key and KeyNavigation properties to control key handling and the input focus property to enable key handling in the first place


	Transformation
	scale and rotate transformation and the generic transform property list for x,y,z transformation and their transformOrigin point


	Visual
	opacity to control transparency, visible to show/hide elements, clip to restrain paint operations to the element boundary and smooth to enhance the rendering quality


	State definition
	states list property with the supported list of states and the current state property as also the transitions list property to animate state changes.





To better understand the different properties we will try to introduce them throughout this chapter in context of the element presented. Please remember these fundamental properties are available on every visual element and work the same across these elements.


Nota

The Item element is often used as a container for other elements, similar to the div element in HTML.






Rectangle Element

The Rectangle extends Item and adds a fill color to it. Additionally it supports borders defined by border.color and border.width. To create rounded rectangles you can use the radius property.

    Rectangle {
        id: rect1
        x: 12; y: 12
        width: 76; height: 96
        color: "lightsteelblue"
    }
    Rectangle {
        id: rect2
        x: 112; y: 12
        width: 76; height: 96
        border.color: "lightsteelblue"
        border.width: 4
        radius: 8
    }






[image: ../../_images/rectangle21.png]



Nota

Valid colors values are colors from the SVG color names (see  http://www.w3.org/TR/css3-color/#svg-color). You can provide colors in QML in different ways, but the most common way is an RGB string (‘#FF4444’) or as a color name (e.g. ‘white’).



Besides a fill color and a border the rectangle also supports custom gradients.

    Rectangle {
        id: rect1
        x: 12; y: 12
        width: 176; height: 96
        gradient: Gradient {
            GradientStop { position: 0.0; color: "lightsteelblue" }
            GradientStop { position: 1.0; color: "slategray" }
        }
        border.color: "slategray"
    }






[image: ../../_images/rectangle31.png]


A gradient is defined by a series of gradient stops. Each stop has a position and a color. The position marks the position on the y-axis (0 = top, 1 = bottom). The color of the GradientStop marks the color at that position.


Nota

A rectangle with no width/height set will not be visible. This happens often when you have several rectangles width (height) depending on each other and something went wrong in your composition logic. So watch out!




Nota

It is not possible to create an angled gradient. For this it’s better to use predefined images. One possibility would be to just rotate the rectangle with the gradient, but be aware the geometry of an rotated rectangle will not change and thus will lead to confusion as the geometry of the element is not the same as the visible area. From the authors perspective it’s really better to use designed gradient images in that case.






Text Element

To display text, you can use the Text element. Its most notable property is the text property of type string. The element calculates its initial width and height based on the given text and the font used. The font can be influenced using the font property group (e.g. font.family, font.pixelSize, ...). To change the color of the text just use the color property.

    Text {
        text: "The quick brown fox"
        color: "#303030"
        font.family: "Ubuntu"
        font.pixelSize: 28
    }












[image: ../../_images/text1.png]


Text can be aligned to each side and the center using the horizontalAlignment and verticalAlignment properties. To further enhance the text rendering you can use the style and styleColor property , which allows you render the text in outline, raised and sunken mode. For longer text you often want to define a break position like A very ... long text, this can be achieved using the elide property. The elide property allows you to set the elide position to the left, right or middle of your text. In case you don’t want the ‘...’ of the elide mode to appear but still want to see the full text you can also wrap the text using the wrapMode property (works only when width is explicitly set):

Text {
    width: 40; height: 120
    text: 'A very long text'
    // '...' shall appear in the middle
    elide: Text.ElideMiddle
    // red sunken text styling
    style: Text.Sunken
    styleColor: '#FF4444'
    // align text to the top
    verticalAlignment: Text.AlignTop
    // only sensible when no elide mode
    // wrapMode: Text.WordWrap
}





A Text element only displays the given text. It does not render any background decoration. Besides the rendered text the Text element is transparent. It’s part of your overall design to provide a sensible background to the text element.


Nota

Be aware a Text initial width (height) is depending on the text string and on the font set. A Text element with no width set and no text will not be visible, as the initial width will be 0.




Nota

Often when you want to layout Text elements you need to differentiate between aligning the text inside the Text element boundary box or to align the element boundary box itself. In the former you want to use the horizontalAlignment and verticalAlignment properties and in the later case you want to manipulate the element geometry or use anchors.






Image Element

An Image element is able to display images in various formats (e.g. PNG, JPG, GIF, BMP, WEBP). For the full list of supported image formats, please consult the Qt documentation. Besides the obvious source property to provide the image URL it contains a fillMode which controls the resizing behavior.

    Image {
        x: 12; y: 12
        // width: 72
        // height: 72
        source: "assets/triangle_red.png"
    }
    Image {
        x: 12+64+12; y: 12
        // width: 72
        height: 72/2
        source: "assets/triangle_red.png"
        fillMode: Image.PreserveAspectCrop
        clip: true
    }






[image: ../../_images/image1.png]



Nota

A URL can be a local path with forward slashes ( ”./images/home.png” ) or a web-link (e.g. “http://example.org/home.png”).




Nota

Image elements using PreserveAspectCrop should also enable the clipping to avoid image data being rendered outside the Image boundaries. By default clipping is disabled (clip : false). You  need to enable clipping (clip : true) to constrain the painting to the elements bounding rectangle. This can be used on any visual element.




Dica

Using C++ you are able to create your own image provider using QQmlImageProvider [http://doc.qt.io/qt-5//qqmlimageprovider.html]. This allows you to create images on the fly and threaded image loading.






MouseArea Element

To interact with these elements you often will use a MouseArea. It’s a rectangular invisible item in where you can capture mouse events. The mouse area is often used together with a visible item to execute commands when the user interacts with the visual part.

    Rectangle {
        id: rect1
        x: 12; y: 12
        width: 76; height: 96
        color: "lightsteelblue"
        MouseArea {
            id: area
            width: parent.width
            height: parent.height
            onClicked: rect2.visible = !rect2.visible
        }
    }

    Rectangle {
        id: rect2
        x: 112; y: 12
        width: 76; height: 96
        border.color: "lightsteelblue"
        border.width: 4
        radius: 8
    }
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Nota

This is an important aspect of Qt Quick, the input handling is separated from the visual presentation. By this it allows you to show the user an interface element, but the interaction area can be larger.








Components

A component is a reusable element and QML provides different ways to create components. Currently we will look only at the simplest form - a file based component. A file based component is created by placing a QML element in a file and give the file an element name (e.g. Button.qml). You can use the component like every other element from the QtQuick module, in our case you would use this in your code as Button { ... }.

For example, let’s create a rectangle containing a text componenet and a mouse area. This resembles a simple button and doesn’t need to be more complicated for our purposes.

    Rectangle { // our inlined button ui
        id: button
        x: 12; y: 12
        width: 116; height: 26
        color: "lightsteelblue"
        border.color: "slategrey"
        Text {
            anchors.centerIn: parent
            text: "Start"
        }
        MouseArea {
            anchors.fill: parent
            onClicked: {
                status.text = "Button clicked!"
            }
        }
    }

    Text { // text changes when button was clicked
        id: status
        x: 12; y: 76
        width: 116; height: 26
        text: "waiting ..."
        horizontalAlignment: Text.AlignHCenter
    }





The UI will look similar to this. On the left the UI in the initial state, on the right after the button has been clicked.







	
[image: ../../_images/button_waiting1.png]
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Our task is now to extract the button UI in a reusable component. For this we shortly think about a possible API for our button. You can do this by imagining how someone else should use your button. Here’s what I came up with:

// minimal API for a button
Button {
    text: "Click Me"
    onClicked: { // do something }
}





I would like to set the text using a text property and to implement my own click handler. Also I would expect the button to have a sensible initial size, which I can overwrite (e.g. with width: 240 for example).

To achieve this we create a Button.qml file and copy our button UI inside. Additionally we need to export the properties a user might want to change on the root level.

// Button.qml

import QtQuick 2.5

Rectangle {
    id: root
    // export button properties
    property alias text: label.text
    signal clicked

    width: 116; height: 26
    color: "lightsteelblue"
    border.color: "slategrey"

    Text {
        id: label
        anchors.centerIn: parent
        text: "Start"
    }
    MouseArea {
        anchors.fill: parent
        onClicked: {
            root.clicked()
        }
    }
}





We have exported the text and clicked signal on the root level. Typically we name our root element root to make the referencing easier. We use the alias feature of QML, which is a way to export properties inside nested QML elements to the root level and make this available for the outside world. It is important to know, that only the root level properties can be accessed from outside this file by other components.

To use our new Button element we can simply declare it in our file. So the earlier example will become a little bit simplified.

    Button { // our Button component
        id: button
        x: 12; y: 12
        text: "Start"
        onClicked: {
            status.text = "Button clicked!"
        }
    }

    Text { // text changes when button was clicked
        id: status
        x: 12; y: 76
        width: 116; height: 26
        text: "waiting ..."
        horizontalAlignment: Text.AlignHCenter
    }





Now you can use as many buttons as you like in your UI by just using Button { ... }. A real button could be more complex, e.g providing feedback when clicked or showing a nicer decoration.


Nota

Personally you could even go a step further and use an item as a root element. This prevents users to change the color of our designed button, and provides us more control about the exported API. The target should be to export a minimal API. Practically this means we would need to replace the root Rectangle with an Item and make the rectangle a nested element in the root item.







Item {
    id: root
    width: 116; height: 26

    property alias text: label.text
    signal clicked

    Rectangle {
        anchors.fill parent
        color: "lightsteelblue"
        border.color: "slategrey"
    }
    ...
}







With this technique, it is easy to create a whole series of reusable components.




Simple Transformations

A transformation manipulates the geometry of an object. QML Items can in general be translated, rotated and scaled. There is a simple form of these operations and a more advanced way.

Let’s start with the simple transformations. Here is our scene as our starting point.

A simple translation is done via changing the x,y position. A rotation is done using the rotation property. The value is provided in degrees (0 .. 360). A scaling is done using the scale property and a value <1 means the element is scaled down and >1 means the element is scaled up. The rotation and scaling does not change your geometry. The items x,y and width/height haven’t changed. Just the painting instructions are transformed.

Before we show off the example I would like to introduce a little helper: The ClickableImage element. The ClickableImage is just an image with a mouse area. This brings up a useful rule of thumb - if you have copied a chunk of code three times, extract it into a component.

// ClickableImage.qml

// Simple image which can be clicked

import QtQuick 2.5

Image {
    id: root
    signal clicked

    MouseArea {
        anchors.fill: parent
        onClicked: root.clicked()
    }
}






[image: ../../_images/objects1.png]


We use our clickable image to present three objects (box, circle, triangle). Each object performs a simple transformation when clicked. Clicking the background will reset the scene.

// transformation.qml


import QtQuick 2.5

Item {
    // set width based on given background
    width: bg.width
    height: bg.height

    Image { // nice background image
        id: bg
        source: "assets/background.png"
    }

    MouseArea {
        id: backgroundClicker
        // needs to be before the images as order matters
        // otherwise this mousearea would be before the other elements
        // and consume the mouse events
        anchors.fill: parent
        onClicked: {
            // reset our little scene
            circle.x = 84
            box.rotation = 0
            triangle.rotation = 0
            triangle.scale = 1.0
        }
    }

    ClickableImage {
        id: circle
        x: 84; y: 68
        source: "assets/circle_blue.png"
        antialiasing: true
        onClicked: {
            // increase the x-position on click
            x += 20
        }
    }

    ClickableImage {
        id: box
        x: 164; y: 68
        source: "assets/box_green.png"
        antialiasing: true
        onClicked: {
            // increase the rotation on click
            rotation += 15
        }
    }

    ClickableImage {
        id: triangle
        x: 248; y: 68
        source: "assets/triangle_red.png"
        antialiasing: true
        onClicked: {
            // several transformations
            rotation += 15
            scale += 0.05
        }
    }

    function _test_transformed() {
        circle.x += 20
        box.rotation = 15
        triangle.scale = 1.2
        triangle.rotation = -15
    }

    function _test_overlap() {
        circle.x += 40
        box.rotation = 15
        triangle.scale = 2.0
        triangle.rotation = 45
    }

}
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The circle increments the x-position on each click and the box will rotate on each click. The triangle will rotate and scale the image down on each click, to demonstrate a combined transformation. For the scaling and rotation operation we set antialiasing: true to enable anti-aliasing, which is switched off (same as the clipping property clip) for performance reasons.  In your own work, when you see some rasterized edges in your graphics, then you should probably switch smooth on.


Nota

To achieve better visual quality when scaling images it is recommended to scale images down instead of up. Scaling an image up with a larger scaling factor will result into scaling artifacts (blurred image). When scaling an image you should consider using antialiasing : true to enable the usage of a higher quality filter.



The background MouseArea covers the whole background and resets the object values.


Nota

Elements which appear earlier in the code have a lower stacking order (called z-order). If you click long enough on circle you will see it moves below box. The z-order can also be manipulated by the z-property of an Item.


[image: ../../_images/objects_overlap1.png]


This is because box appears later in the code. The same applies also to mouse areas. A mouse area later in the code will overlap (and thus grab the mouse events) of a mouse area earlier in the code.

Please remember: The order of elements in the document matters.






Positioning Elements

There are a number of QML elements used to position items. These are called positioners and the following are provided in the QtQuick module Row, Column, Grid and Flow. They can be seen showing the same contents in the illustration below.


Nota

Before we go into details, let me introduce some helper elements. The red, blue, green, lighter and darker squares. Each of these components contains a 48x48 pixels colorized rectangle. As reference here is the source code for the RedSquare:

// RedSquare.qml

import QtQuick 2.5

Rectangle {
    width: 48
    height: 48
    color: "#ea7025"
    border.color: Qt.lighter(color)
}





Please note the use of Qt.lighter(color) to produce a lighter border color based on the fill color. We will use these helpers in the next examples to make the source code more compact and hopefully readable. Please remember, each rectangle is initial 48x48 pixels.



The Column element arranges child items into a column by stacking them on top of each other. The spacing property can be used to distance each of the child elements from each other.
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// column.qml

import QtQuick 2.5

DarkSquare {
    id: root
    width: 120
    height: 240

    Column {
        id: row
        anchors.centerIn: parent
        spacing: 8
        RedSquare { }
        GreenSquare { width: 96 }
        BlueSquare { }
    }
}





The Row element places its child items next to each other, either from the left to the right, or from the right to the left, depending on the layoutDirection property. Again, spacing is used to separate child items.
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// row.qml

import QtQuick 2.5

BrightSquare {
    id: root
    width: 400; height: 120

    Row {
        id: row
        anchors.centerIn: parent
        spacing: 20
        BlueSquare { }
        GreenSquare { }
        RedSquare { }
    }
}





The Grid element arranges its children in a grid, by setting the rows and columns properties, the number or rows or columns can be constrained. By not setting either of them, the other is calculated from the number of child items. For instance, setting rows to 3 and adding 6 child items will result in 2 columns. The properties flow and layoutDirection are used to control the order in which the items are added to the grid, while spacing controls the amount of space separating the child items.
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// grid.qml

import QtQuick 2.5

BrightSquare {
    id: root
    width: 160
    height: 160

    Grid {
        id: grid
        rows: 2
        columns: 2
        anchors.centerIn: parent
        spacing: 8
        RedSquare { }
        RedSquare { }
        RedSquare { }
        RedSquare { }
    }

}





The final positioner is Flow. It adds its child items in a flow. The direction of the flow is controlled using flow and layoutDirection. It can run sideways or from the top to the bottom. It can also run from left to right or in the opposite direction. As the items are added in the flow, they are wrapped to form new rows or columns as needed. In order for a flow to work, it must have a width or a height. This can be set either directly, or though anchor layouts.
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// flow.qml

import QtQuick 2.5

BrightSquare {
    id: root
    width: 160
    height: 160

    Flow {
        anchors.fill: parent
        anchors.margins: 20
        spacing: 20
        RedSquare { }
        BlueSquare { }
        GreenSquare { }
    }
}





An element often used with positioners is the Repeater. It works like a for-loop and iterates over a model. In the simplest case a model is just a value providing the amount of loops.
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// repeater.qml

import QtQuick 2.5

DarkSquare {
    id: root
    width: 252
    height: 252
    property variant colorArray: ["#00bde3", "#67c111", "#ea7025"]


    Grid{
        anchors.fill: parent
        anchors.margins: 8
        spacing: 4
        Repeater {
            model: 16
            Rectangle {
                width: 56; height: 56
                property int colorIndex: Math.floor(Math.random()*3)
                color: root.colorArray[colorIndex]
                border.color: Qt.lighter(color)
                Text {
                    anchors.centerIn: parent
                    color: "#f0f0f0"
                    text: "Cell " + index
                }
            }
        }
    }
}





In this repeater example, we use some new magic. We define our own color property, which we use as an array of colors. The repeater creates a series of rectangles (16, as defined by the model). For each loop he creates the rectangle as defined by the child of the repeater. In the rectangle we chose the color by using JS math functions Math.floor(Math.random()*3). This gives us a random number in the range from 0..2, which we use to select the color from our color array. As noted earlier, JavaScript is a core part of Qt Quick, as such the standard libraries are available for us.

A repeater injects the index property into the repeater. It contains the current loop-index. (0,1,..15). We can use this to make our own decisions based on the index, or in our case to visualize the current index with the Text element.


Nota

More advanced handling of larger models and kinetic views with dynamic delegates is covered in an own model-view chapter. Repeaters are best used when having a small amount of static data to be presented.






Layout Items


Por fazer

do we need to remove all uses of anchors earlier?



QML provides a flexible way to layout items using anchors. The concept of anchoring is part of the Item fundamental properties and available to all visual QML elements. An anchors acts like a contract and is stronger than competing geometry changes. Anchors are expressions of relativeness, you always need a related element to anchor with.
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An element has 6 major anchor lines (top, bottom, left, right, horizontalCenter, verticalCenter). Additional there is the baseline anchor for text in Text elements. Each anchor line comes with an offset. In the case of top, bottom, left and right they are called margins. For horizontalCenter, verticalCenter and baseline they are called offsets.
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	An element fills a parent element


        GreenSquare {
            BlueSquare {
                width: 12
                anchors.fill: parent
                anchors.margins: 8
                text: '(1)'
            }
        }










	An element is left aligned to the parent


        GreenSquare {
            BlueSquare {
                width: 48
                y: 8
                anchors.left: parent.left
                anchors.leftMargin: 8
                text: '(2)'
            }
        }










	An element left side is aligned to the parents right side


        GreenSquare {
            BlueSquare {
                width: 48
                anchors.left: parent.right
                text: '(3)'
            }
        }










	Center aligned elements. Blue1 is horizontal centered  on the parent. Blue2 is also horizontal centered but on Blue1 and it’s top is aligned to the Blue1 bottom line.


        GreenSquare {
            BlueSquare {
                id: blue1
                width: 48; height: 24
                y: 8
                anchors.horizontalCenter: parent.horizontalCenter
            }
            BlueSquare {
                id: blue2
                width: 72; height: 24
                anchors.top: blue1.bottom
                anchors.topMargin: 4
                anchors.horizontalCenter: blue1.horizontalCenter
                text: '(4)'
            }
        }










	An element is centered on a parent element


        GreenSquare {
            BlueSquare {
                width: 48
                anchors.centerIn: parent
                text: '(5)'
            }
        }










	An element is centered with an left-offset on a parent element using horizontal and vertical center lines


        GreenSquare {
            BlueSquare {
                width: 48
                anchors.horizontalCenter: parent.horizontalCenter
                anchors.horizontalCenterOffset: -12
                anchors.verticalCenter: parent.verticalCenter
                text: '(6)'
            }
        }













Nota

Our squares have been enhanced to enable dragging. Try the example and drag around some squares. You will see that (1) can’t be dragged as it’s anchored on all sides, sure you can drag the parent of (1) as it’s not anchored at all. (2) can be vertically dragged as only the left side is anchored. Similar applies to (3). (4) can only be dragged vertically as both squares are horizontal centered. (5) is centered on the parent and as such can’t be dragged, similar applies to (7). Dragging an element means changing their x,y position. As anchoring is stronger than geometry changes such as x,y, dragging is restricted by the anchored lines. We will see this effect later when we discuss animations.






Input Elements

We have already used the MouseArea as a mouse input element. Next, we’ll  focus on keyboard input. We start off with the text editing elements: TextInput and TextEdit.


TextInput

The TextInput allows the user to enter a line of text. The element supports input constraints such as validator, inputMask, and echoMode.

// textinput.qml

import QtQuick 2.5

Rectangle {
    width: 200
    height: 80
    color: "linen"

    TextInput {
        id: input1
        x: 8; y: 8
        width: 96; height: 20
        focus: true
        text: "Text Input 1"
    }

    TextInput {
        id: input2
        x: 8; y: 36
        width: 96; height: 20
        text: "Text Input 2"
    }
}
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The user can click inside a TextInput to change the focus. To support switching the focus by keyboard, we can use the KeyNavigation attached property.

// textinput2.qml

import QtQuick 2.5

Rectangle {
    width: 200
    height: 80
    color: "linen"

    TextInput {
        id: input1
        x: 8; y: 8
        width: 96; height: 20
        focus: true
        text: "Text Input 1"
        KeyNavigation.tab: input2
    }

    TextInput {
        id: input2
        x: 8; y: 36
        width: 96; height: 20
        text: "Text Input 2"
        KeyNavigation.tab: input1
    }
}





The KeyNavigation attached property supports a preset of navigation keys where an element id is bound to switch focus on the given key press.

A text input element comes with no visual presentation besides a blinking cursor and the entered text. For the user to be able to recognize the element as an input element it needs some visual decoration, for example a simple rectangle. When placing the TextInput inside an element you need make sure you export the major properties you want others be able to access.

We move this piece of code into our own component called TLineEditV1 for reuse.

// TLineEditV1.qml

import QtQuick 2.5

Rectangle {
    width: 96; height: input.height + 8
    color: "lightsteelblue"
    border.color: "gray"

    property alias text: input.text
    property alias input: input

    TextInput {
        id: input
        anchors.fill: parent
        anchors.margins: 4
        focus: true
    }
}






Nota

If you want to export the TextInput completely, you can export the element by using property alias input: input. The first input is the property name, where the 2nd input is the element id.



We rewrite our KeyNavigation example with the new TLineEditV1 component.

Rectangle {
    ...
    TLineEditV1 {
        id: input1
        ...
    }
    TLineEditV1 {
        id: input2
        ...
    }
}
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And try the tab key for navigation. You will experience the focus does not change to input2. The simple use of focus:true is not sufficient. The problem arises, that the focus was transferred to the input2 element the top-level item inside the TlineEditV1 (our Rectangle) received focus and did not forward the focus to the TextInput. To prevent this QML offers the FocusScope.




FocusScope

A focus scope declares that the last child element with focus:true receives the focus if the focus scope receives the focus. So it’s forward the focus to the last focus requesting child element. We will create a 2nd version of our TLineEdit component called TLineEditV2 using the focus scope as root element.

// TLineEditV2.qml

import QtQuick 2.5

FocusScope {
    width: 96; height: input.height + 8
    Rectangle {
        anchors.fill: parent
        color: "lightsteelblue"
        border.color: "gray"

    }

    property alias text: input.text
    property alias input: input

    TextInput {
        id: input
        anchors.fill: parent
        anchors.margins: 4
        focus: true
    }
}





Our example will now look like this:

Rectangle {
    ...
    TLineEditV2 {
        id: input1
        ...
    }
    TLineEditV2 {
        id: input2
        ...
    }
}





Pressing the tab key now successfully switches the focus between the 2 components and the correct child element inside the component is focused.




TextEdit

The TextEdit is very similar to TextInput and support a multi-line text edit field. It doesn’t have the text constraint properties as this depends on querying the painted size of the text (paintedHeight, paintedWidth). We also create our own component called TTextEdit to provide a edit background and use the focus scope for better focus forwarding.

// TTextEdit.qml

import QtQuick 2.5

FocusScope {
    width: 96; height: 96
    Rectangle {
        anchors.fill: parent
        color: "lightsteelblue"
        border.color: "gray"

    }

    property alias text: input.text
    property alias input: input

    TextEdit {
        id: input
        anchors.fill: parent
        anchors.margins: 4
        focus: true
    }
}





You can use it like the TLineEdit component

// textedit.qml

import QtQuick 2.5

Rectangle {
    width: 136
    height: 120
    color: "linen"

    TTextEdit {
        id: input
        x: 8; y: 8
        width: 120; height: 104
        focus: true
        text: "Text Edit"
    }
}
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Keys Element

The attached property Keys allows executing code based on certain key presses. For example to move a square around and scale we can hook into the up, down, left and right keys to translate the element and the plus, minus key to scale the element.

// keys.qml

import QtQuick 2.5

DarkSquare {
    width: 400; height: 200

    GreenSquare {
        id: square
        x: 8; y: 8
    }
    focus: true
    Keys.onLeftPressed: square.x -= 8
    Keys.onRightPressed: square.x += 8
    Keys.onUpPressed: square.y -= 8
    Keys.onDownPressed: square.y += 8
    Keys.onPressed: {
        switch(event.key) {
            case Qt.Key_Plus:
                square.scale += 0.2
                break;
            case Qt.Key_Minus:
                square.scale -= 0.2
                break;
        }

    }
}
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Advanced Techniques


Por fazer
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Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



Till now, we have mostly looked at simple graphical elements and how to arrange and manipulate them. This chapter is about how to control these changes in a way that a value of a property not just changes instantly, it’s more how the value changes over time: an animation. This technology is one of the key foundations for modern slick user interfaces and can be extended with a system to describe your user interface using states and transitions. Each state defines a set of property changes and can be combined with animations on state changes, called transitions.


Animations

Animations are applied to property changes. An animation defines the interpolation curve when for property value changes to create smooth transitions from one value to another. An animation is defined by a series of target properties to be animated, an easing curve for the interpolation curve and in the most cases a duration, which defines the time for the property change. All animations in Qt Quick are controlled by the same timer, and are therefore synchronized. This improves the performance and visual quality of animations.


Nota

Animations control how property changes, i.e. value interpolation. This is a fundamental concept. QML is based on elements, properties and scripting. Every element provides dozens of properties, each property is waiting to get animated by you. During the book you will see this is a spectacular playing field. You will caught yourself at looking at some animations and just admire their beauty and for sure also your creative genius. Please remember then: Animations control property changes and every element has dozens of properties at your disposal.

Unlock the power!
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// animation.qml

import QtQuick 2.5

Image {
    id: root
    source: "assets/background.png"

    property int padding: 40
    property int duration: 400
    property bool running: false

    Image {
        id: box
        x: root.padding;
        y: (root.height-height)/2
        source: "assets/box_green.png"

        NumberAnimation on x {
            to: root.width - box.width - root.padding
            duration: root.duration
            running: root.running
        }
        RotationAnimation on rotation {
            to: 360
            duration: root.duration
            running: root.running
        }
    }

    MouseArea {
        anchors.fill: parent
        onClicked: root.running = true
    }

}





The example above shows a simple animation applied on the x and rotation property. Each animation has a duration of 4000 milliseconds (msecs) and loops forever. The animation on x moves the x coordinate from the object gradually over to 240px. The animation on rotation runs from the current angle to 360 degree. Both animations run in parallel and are started as soon as the UI is loaded.

Now you can play around with the animation by changing the to and duration property or you could add another animation for example on the opacity or even the scale. Combining these it could look like the object is disappearing in the deep space. Try it out!


Animation Elements

There are several types of animation elements, each optimized for a specific use case. Here is a list of the most prominent animations:


	PropertyAnimation - Animates changes in property values

	NumberAnimation - Animates changes in qreal-type values

	ColorAnimation - Animates changes in color values

	RotationAnimation - Animates changes in rotation values



Besides these basic and widely used animation elements, Qt Quick provides also more specialized animations for specific use cases:


	PauseAnimation - Provides a pause for an animation

	SequentialAnimation - Allows animations to be run sequentially

	ParallelAnimation - Allows animations to be run in parallel

	AnchorAnimation - Animates changes in anchor values

	ParentAnimation - Animates changes in parent values

	SmoothedAnimation - Allows a property to smoothly track a value

	SpringAnimation - Allows a property to track a value in a spring-like motion

	PathAnimation - Animates an item along a path

	Vector3dAnimation - Animates changes in QVector3d values



We will learn later how to create a sequence of animations. While working on more complex animations there comes up the need to change a property or to run a script during an an ongoing animation. For this Qt Quick offers the action elements, which can be used everywhere where the other animation elements can be used:


	PropertyAction - Specifies immediate property changes during animation

	ScriptAction - Defines scripts to be run during an animation



The major animation types will be discussed during this chapter using small focused examples.




Applying Animations

Animation can be applied in several ways:


	Animation on property - runs automatically after element is fully loaded

	Behavior on property - runs automatically when the property value changes

	Standalone Animation - runs when animation is explicitly started using start() or running is set to true (e.g. by a property binding)



Later we see also how animations can be used inside state transitions.


Extended ClickableImage Version 2

To demonstrate the usage of animations we reuse our ClickableImage component from an earlier chapter and extended it with a text element.

// ClickableImageV2.qml
// Simple image which can be clicked

import QtQuick 2.5

Item {
    id: root
    width: container.childrenRect.width
    height: container.childrenRect.height
    property alias text: label.text
    property alias source: image.source
    signal clicked

    Column {
        id: container
        Image {
            id: image
        }
        Text {
            id: label
            width: image.width
            horizontalAlignment: Text.AlignHCenter
            wrapMode: Text.WordWrap
            color: "#ececec"
        }
    }

    MouseArea {
        anchors.fill: parent
        onClicked: root.clicked()
    }
}





To organize the element below the image we used a Column positioner and calculated the width and height based on the column’s childrenRect property. We exposed two properties: text and the image source as also the clicked signal. We also wanted that the text is as wide as the image and it should wrap. We achieve the latter by using the Text elements wrapMode property.


Nota

Due to the inversion of the geometry-dependency (parent geometry depends on child geometry) we can’t set a width/height on the ClickableImageV2, as this will break our width/height binding. This is a limitation on our internal design and as a designer of components you should be aware of this. Normally you should prefer the child’s geometry to depend on the parent’s geometry.





The objects ascending.


[image: ../../_images/animationtypes_start.png]


The three objects are all at the same y-position (y=200). They need to travel all to y=40. Each of them using a different method with different side-effects and features.

    ClickableImageV2 {
        id: greenBox
        x: 40; y: root.height-height
        source: "assets/box_green.png"
        text: "animation on property"
        NumberAnimation on y {
            to: 40; duration: 4000
        }
    }





1st object

The 1st object travels using the Animation on <property> strategy. The animation starts immediately. When an object is clicked their y-position is reset to the start position, this applies to all objects. On the 1st object the reset does not have any effect as long as the animation is running. It’s even disturbing as the y-position is set for a fraction of a second to a new value before the animation starts. Such competing property changes should be avoided.

    ClickableImageV2 {
        id: blueBox
        x: (root.width-width)/2; y: root.height-height
        source: "assets/box_blue.png"
        text: "behavior on property"
        Behavior on y {
            NumberAnimation { duration: 4000 }
        }

        onClicked: y = 40
        // random y on each click
//        onClicked: y = 40+Math.random()*(205-40)
    }





2nd object

The 2nd object travels using a behavior on animation. This behavior tells the property, every time the property value changes, it changes through this animation. The behavior can be disabled by enabled : false on the Behavior element. The object will start traveling when you click it (y-position is then set to 40). Another click has no influence as the position is already set. You could try to use a random value (e.g. 40+(Math.random()*(205-40)) for the y-position. You will see that the object will always animate to the new position and adapt its speed to match the 4 seconds to the destination defined by the animations duration.

    ClickableImageV2 {
        id: redBox
        x: root.width-width-40; y: root.height-height
        source: "assets/box_red.png"
        onClicked: anim.start()
//        onClicked: anim.restart()

        text: "standalone animation"

        NumberAnimation {
            id: anim
            target: redBox
            properties: "y"
            to: 40
            duration: 4000
        }
    }





3rd object

The 3rd object uses a standalone animation. The animation is defined as its own element and could be everywhere in the document. The click will start the animation using the animations function start(). Each animation has a start(), stop(), resume(), restart() function. The animation itself contains much more information then the other animation types earlier. We need to define the target and properties to declare the target element to be animated and which properties we want to animate. We need to define a to value and in this case we define also a from value to allow a re-start of the animation.


[image: ../../_images/animationtypes.png]


A click on the background will reset all objects to their initial position. The 1st object can’t be restarted except by re-starting the program which triggers the re-loading of the element.


Nota

Another way to start/stop an animation is to bind a property to the running property of an animation. This is especially useful when the user-input is in control of properties:

NumberAnimation {
    ...
    // animation runs when mouse is pressed
    running: area.pressed
}
MouseArea {
    id: area
}










Easing Curves

The value change of a property can be controlled by an animation. Easing attributes allows influencing the interpolation curve of a property change. All animations we have defined by now use a linear interpolation because the initial easing type of an animation is Easing.Linear. It’s best visualized with a small plot, where the y-axis is the property to be animated and the x-axis is the time (duration). A linear interpolation would draw a straight line from the from value at the start of the animation to the to value at the end of the animation. So the easing type defines the curve of change. Easing types are carefully chosen to support a natural fit for a moving object, for example when a page slides out. Initially the page should slide out slowly and then gaining the speed to finally slide out on high speed, similar to turning the page of a book.


Nota

Animations should not be overused. As other aspects of UI design also animations should be designed carefully and support the UI flow and not dominate it. The eye is very sensitive to moving objects and animations can easily distract the user.



In the next example we will try some easing curves. Each easing curve is displayed by a click-able image and, when clicked, will set a new easing type on the square animation and then trigger a restart() to run the animation with the new curve.


[image: ../../_images/easingcurves.png]


The code for this example was made a little bit more complicated.We first create a grid of EasingTypes and a Box which is controlled by the easing types. A easing type just displays the curve which the box shall use for its animation. When the user clicks on an easing curve the box moves in a direction according to the easing curve. The animation itself is a standalone-animation with the target set to the box and configured for x-property animation with a duration of 2 secs.


Nota

The internals of the EasingType renders the curve in real time and the interested reader can look it up in the EasingCurves example.



// EasingCurves.qml

import QtQuick 2.5
import QtQuick.Layouts 1.2

Rectangle {
    id: root
    width: childrenRect.width
    height: childrenRect.height

    color: '#4a4a4a'
    gradient: Gradient {
        GradientStop { position: 0.0; color: root.color }
        GradientStop { position: 1.0; color: Qt.lighter(root.color, 1.2) }
    }

    ColumnLayout {

        Grid {
            spacing: 8
            columns: 5
            EasingType {
                easingType: Easing.Linear
                title: 'Linear'
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.InExpo
                title: "InExpo"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.OutExpo
                title: "OutExpo"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.InOutExpo
                title: "InOutExpo"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.InOutCubic
                title: "InOutCubic"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.SineCurve
                title: "SineCurve"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.InOutCirc
                title: "InOutCirc"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.InOutElastic
                title: "InOutElastic"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.InOutBack
                title: "InOutBack"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
            EasingType {
                easingType: Easing.InOutBounce
                title: "InOutBounce"
                onClicked: {
                    animation.easing.type = easingType
                    box.toggle = !box.toggle
                }
            }
        }
        Item {
            height: 80
            Layout.fillWidth: true
            Box {
                id: box
                property bool toggle
                x: toggle?20:root.width-width-20
                anchors.verticalCenter: parent.verticalCenter
                gradient: Gradient {
                    GradientStop { position: 0.0; color: "#2ed5fa" }
                    GradientStop { position: 1.0; color: "#2467ec" }
                }
                Behavior on x {
                    NumberAnimation {
                        id: animation
                        duration: 500
                    }
                }
            }
        }
    }
}





A you play with it, please observe the change of speed during an animation. Some animations feel more natural for the object and some feel irritating.

Besides the duration and easing.type you are able to fine tune animations. For example the general PropertyAnimation where most animation inherit from additionally supports an easing.amplitude, easing.overshoot and easing.period property which allows you to fine-tune the behavior of particular easing curves. Not all easing curves support these parameters. Please consult the easing table [http://doc.qt.io/qt-5//qml-qtquick-propertyanimation.html#easing-prop] from the PropertyAnimation documentation to check if an easing parameter has influence on an easing curve.


Nota

Choosing the right animation for the element in the user interface context is crucial for the outcome. Remember the animation shall support the UI flow; not irritate the user.






Grouped Animations

Often animations will be more complex then just animating one property. You might want to run several animations at the same time or one after another or even execute a script between two animations. For this, the grouped animation offer you a possibility. As the named suggests it’s possible to group animations. Grouping can be done in two ways: parallel or sequential. You can use the SequentialAnimation or the ParallelAnimation element, which act as animation containers for other animation elements. These grouped animations are animations themselves and can be used exactly as such.


[image: ../../_images/groupedanimation.png]


All direct child animations of a parallel animation will run in parallel, when started. This allows you to animate different properties at the same time.

// parallelanimation.qml
import QtQuick 2.5

BrightSquare {
    id: root
    width: 600
    height: 400
    property int duration: 3000
    property Item ufo: ufo

    Image {
        anchors.fill: parent
        source: "assets/ufo_background.png"
    }


    ClickableImageV3 {
        id: ufo
        x: 20; y: root.height-height
        text: 'ufo'
        source: "assets/ufo.png"
        onClicked: anim.restart()
    }

    ParallelAnimation {
        id: anim
        NumberAnimation {
            target: ufo
            properties: "y"
            to: 20
            duration: root.duration
        }
        NumberAnimation {
            target: ufo
            properties: "x"
            to: 160
            duration: root.duration
        }
    }
}






[image: ../../_images/parallelanimation_sequence.png]


A sequential animation will first run the first child animation and then continue from there.

// sequentialanimation.qml
import QtQuick 2.5

BrightSquare {
    id: root
    width: 600
    height: 400
    property int duration: 3000

    property Item ufo: ufo

    Image {
        anchors.fill: parent
        source: "assets/ufo_background.png"
    }

    ClickableImageV3 {
        id: ufo
        x: 20; y: root.height-height
        text: 'rocket'
        source: "assets/ufo.png"
        onClicked: anim.restart()
    }

    SequentialAnimation {
        id: anim
        NumberAnimation {
            target: ufo
            properties: "y"
            to: 20
            // 60% of time to travel up
            duration: root.duration*0.6
        }
        NumberAnimation {
            target: ufo
            properties: "x"
            to: 400
            // 40% of time to travel sideways
            duration: root.duration*0.4
        }
    }
}






[image: ../../_images/sequentialanimation_sequence.png]


Grouped animation can also be nested, for example a sequential animation can have two parallel animations as child animations, and so on. We can visualize this with a soccer ball example. The idea is to throw a ball from left to right an animate its behavior.


[image: ../../_images/soccer_init.png]


To understand the animation we need to dissect it into the integral transformations of the object. We need to remember animation do animate property changes. Here are the different transformations:


	An x-translation from left-to-right (X1)

	An y-translation from down to up (Y1) followed by a translation from up to down (Y2) with some bouncing

	A rotation over 360 over the whole animation duration (ROT1)



The whole duration of the animation should take three seconds.


[image: ../../_images/soccer_plan.png]


We start with an empty item as root element of the width of 480 and height of 300.

import QtQuick 2.5

Item {
    id: root
    width: 480
    height: 300
    property int duration: 3000

    ...
}





We have defined our total animation duration as reference to better synchronize the animation parts.

The next step would be to add the background, which in our case are 2 rectangles with a green and blue gradients.

    Rectangle {
        id: sky
        width: parent.width
        height: 200
        gradient: Gradient {
            GradientStop { position: 0.0; color: "#0080FF" }
            GradientStop { position: 1.0; color: "#66CCFF" }
        }
    }
    Rectangle {
        id: ground
        anchors.top: sky.bottom
        anchors.bottom: root.bottom
        width: parent.width
        gradient: Gradient {
            GradientStop { position: 0.0; color: "#00FF00" }
            GradientStop { position: 1.0; color: "#00803F" }
        }
    }






[image: ../../_images/soccer_stage1.png]


The upper blue rectangle takes 200 pixel of the height and the lower one is anchored to the top on the sky and to the bottom on the root element.

Let’s bring the soccer ball onto the green. The ball is an image, stored under “assets/soccer_ball.png”. For the beginning we would like to position it in the lower left corner, near the edge.

    Image {
        id: ball
        x: 0; y: root.height-height
        source: "assets/soccer_ball.png"

        MouseArea {
            anchors.fill: parent
            onClicked: {
                ball.x = 0;
                ball.y = root.height-ball.height;
                ball.rotation = 0;
                anim.restart()
            }
        }
    }






[image: ../../_images/soccer_stage2.png]


The image has a mouse area attached to it. If the ball is clicked the position of the ball will reset and the animation restarted.

Let’s start with an sequential animation for the two y translations first.

SequentialAnimation {
    id: anim
    NumberAnimation {
        target: ball
        properties: "y"
        to: 20
        duration: root.duration * 0.4
    }
    NumberAnimation {
        target: ball
        properties: "y"
        to: 240
        duration: root.duration * 0.6
    }
}






[image: ../../_images/soccer_stage3.png]


This specifies that 40% of the total animation duration is the up animation and 60% the down animation. One animation after another as a sequence. The transformations are animated on a linear path but there is no curve currently. Curves will be added later using the easing curves, at the moment we’re concentrating on getting the transformations animated.

Next, we need to add the x-translation. The x-translation shall run in parallel with the y-translation so we need to encapsulate the sequence of y-translations into a parallel animation together with the x-translation.

ParallelAnimation {
    id: anim
    SequentialAnimation {
        // ... our Y1, Y2 animation
    }
    NumberAnimation { // X1 animation
        target: ball
        properties: "x"
        to: 400
        duration: root.duration
    }
}






[image: ../../_images/soccer_stage4.png]


At the end we would like the ball to be rotating. For this we need to add another animation to the parallel animation. We choose the RotationAnimation as it’s specialized for rotation.

ParallelAnimation {
    id: anim
    SequentialAnimation {
        // ... our Y1, Y2 animation
    }
    NumberAnimation { // X1 animation
        // X1 animation
    }
    RotationAnimation {
        target: ball
        properties: "rotation"
        to: 720
        duration: root.duration
    }
}





That’s the whole animation sequence. The one thing left is to provide the correct easing curves for the movements of the ball. For the Y1 animation I use a Easing.OutCirc curve as this should look more like a circular movement. Y2 is enhanced using an Easing.OutBounce as the ball should bounce and the bouncing should happen at the end (try an Easing.InBounce and you see the bouncing will start right away).
The X1 and ROT1 animation are left as is with a linear curve.

Here is the final animation code for your reference:

    ParallelAnimation {
        id: anim
        SequentialAnimation {
            NumberAnimation {
                target: ball
                properties: "y"
                to: 20
                duration: root.duration * 0.4
                easing.type: Easing.OutCirc
            }
            NumberAnimation {
                target: ball
                properties: "y"
                to: root.height-ball.height
                duration: root.duration * 0.6
                easing.type: Easing.OutBounce
            }
        }
        NumberAnimation {
            target: ball
            properties: "x"
            to: root.width-ball.width
            duration: root.duration
        }
        RotationAnimation {
            target: ball
            properties: "rotation"
            to: 720
            duration: root.duration
        }
    }










States and Transitions

Often parts of a user interface can be described in states. A state defines a set of property changes and can be triggered by a certain condition. Additional these state switches can have a transition attached which defines how these changes should be animated or any additional actions shall be applied. Actions can also be applied when a state is entered.


States

You define states in QML with the State element, which needs to be bound to the states array of any item element. A state is identified through a state name and consist, in its simplest form, of a series of property changes on elements. The default state is defined by the initial properties of the element and is named "" (the empty string).

Item {
    id: root
    states: [
        State {
            name: "go"
            PropertyChanges { ... }
        },
        State {
            name: "stop"
            PropertyChanges { ... }
        }
    ]
}





A state is changed by assigning a new state name to the state property of the element with the states defined.


Nota

Another way to switch states is using the when property of the State element. The when property can be set to an expression that evaluates to true when the state should be applied.



Item {
    id: root
    states: [
        ...
    ]

    Button {
        id: goButton
        ...
        onClicked: root.state = "go"
    }
}






[image: ../../_images/trafficlight_sketch.png]


For example, a traffic light might have two signaling lights. The upper one signaling stop with a red color and the lower one signaling go with a green color. In this example both lights should not shine at the same time. Let’s have a look at the state chart diagram.


[image: ../../_images/trafficlight_states.png]


When the system is switched on it goes automatically into the stop mode as default state. The stop state changes the light1 to red and light2 to black (off). An external event can now trigger a state switch to the "go" state. In the go state we change the color properties from light1 to black (off) and light2 to green to indicate the passers may walk now.

To realize this scenario we start sketching our user interface for the 2 lights. For simplicity we use 2 rectangles with the radius set to the half of the width (and the width is the same as the height, which means it’s a square).

    Rectangle {
        id: light1
        x: 25; y: 15
        width: 100; height: width
        radius: width/2
        color: root.black
        border.color: Qt.lighter(color, 1.1)
    }

    Rectangle {
        id: light2
        x: 25; y: 135
        width: 100; height: width
        radius: width/2
        color: root.black
        border.color: Qt.lighter(color, 1.1)
    }





As defined in the state chart we want to have two states one the "go" state and the other the "stop" state, where each of them changes the traffic lights respective to red or green. We set the state property to stop to ensure the initial state of our traffic light is the stop state.


Nota

We could have achieved the same effect with only a "go" state and no explicit "stop" state by setting the color of light1 to red and the color of light2 to black. The initial state "" defined by the initial property values would then act as the "stop" state.



    state: "stop"

    states: [
        State {
            name: "stop"
            PropertyChanges { target: light1; color: root.red }
            PropertyChanges { target: light2; color: root.black }
        },
        State {
            name: "go"
            PropertyChanges { target: light1; color: root.black }
            PropertyChanges { target: light2; color: root.green }
        }
    ]





Using PropertyChanges { target: light2; color: "black" } is not really required in this examples as the initial color of light2 is already black. In a state it’s only necessary to describe how the properties shall change from their default state (and not from the previous state).

A state change is triggered using a mouse area which covers the whole traffic light and toggles between the go and stop state when clicked.

    MouseArea {
        anchors.fill: parent
        onClicked: parent.state = (parent.state == "stop"? "go" : "stop")
    }






[image: ../../_images/trafficlight_ui.png]


We are now able to successfully change the state of the traffic lamp. To make the UI more appealing and look natural we should add some transitions with animation effects. A transition can be triggered by a state change.


Nota

It’s possible to create a similar logic using scripting instead of QML states. Developers can easily fall into the trap of writing more a JavaScript program than a QML program.






Transitions

A series of transitions can be added to every item. A transition is executed by a state change. You can define on which state change a particular transition can be applied using the from: and to: properties. These two properties act like a filter, when the filter is true the transition will be applied. You can also use the wild-cast “*” which means “any state”. For example from:"*"; to:"*" means from any state to any other state and is the default value for from and to, which means the transition is applied to every state switch.

For this example we would like to animate the color changes when switching state from “go” to “stop”. For the other reversed state change (“stop” to “go”) we want to keep an immediate color change and don’t apply a transition. We restrict the transition with the from and to properties to filter only the state change from “go” to “stop”. Inside the transition we add two color animations for each light, which shall animate the property changes defined in the state description.

    transitions: [
        Transition {
            from: "stop"; to: "go"
//            from: "*"; to: "*"
            ColorAnimation { target: light1; properties: "color"; duration: 2000 }
            ColorAnimation { target: light2; properties: "color"; duration: 2000 }
        }
    ]





You can change the state though clicking the UI. The state is applied immediately and will also change the state while a transition is running. So try to click the UI while the state is in transition from “stop” to “go”. You will see the change will happen immediately.


[image: ../../_images/trafficlight_transition.png]


You could play around with this UI by, for example, scaling the inactive light down to highlight the active light. For this you would need to add another property change for scaling to the states and also handle the animation for the scaling property in the transition. Another option would be to add an “attention” state where the lights are blinking yellow. For this, you would need to add a sequential animation to the transition for one second going to yellow (“to” property of the animation and one sec going to “black”). Maybe you would also want to change the easing curve to make it more visually appealing.






Advanced Techniques


Por fazer

To be written









          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    Model-View-Delegate
    
    

    
 
  
  

    
      Navegação

      
        	
          próximo

        	
          anterior |

        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
Model-View-Delegate

Autor da secção: e8johan [https://bitbucket.org/e8johan]


Nota
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The source code for this chapter can be found in the assets folder.



In Qt Quick, data is separated from the presentation through a model-view separation. For each view, the visualization of each data element is separated into a delegate. Qt Quick comes with a set of predefined models and views. To utilize the system, one must understand these classes and know how to create appropriate delegates to get the right look and feel.


Concept

One of the most important aspects when developing user interfaces, is to keep the representation of the data separate from the visualization. For instance, a phonebook could be arranged as a vertical list of text entries or a grid of pictures of the contacts. In both cases, the data is identical: the phonebook, but the visualization differs. This division is commonly referred to as the model-view pattern. In this pattern the data is referred to as the model, while the visualization is handled by the view.

In QML, the model and view are joined by the delegate. The responsibility are divided as follows. The model provides the data. For each data item, there might be multiple values. In the example above, each phonebook entry has a name, a picture and a number. The data is arranged in a view, in which each item is visualized using a delegate. The task of the view is to arrange the delegates, while each delegate shows the values of each model item to the user.

[image: digraph model_view_delegate_roles { View -> Model [label="Visualizes Model"] Delegate -> Model [label="Visualizes Model Rows"] View -> Delegate [label="Creates and Places"] }]



Basic Models

The most basic way to separate the data from the presentation is to use the Repeater element. It is used to instantiate an array of items, and is easy to combine with a positioner to populate a part of the user interface. A repeater uses a model, which can be anything from the number of items to instantiate, to a fully blown model gathering data from the Internet.

In its simplest form, the repeater can be used to instantiate a specified number of items. Each item will have access to an attached property, the variable index, that can be used to tell the items apart. In the example below, a repeater is used to create 10 instances of an item. The number of items are controlled using the model property. For each item, the Rectangle containing a Text element found inside the Repeater item, is instantiated. As you can tell, the text property is set to the index value, thus the items are numbered from zero to nine.

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: 10
        BlueBox {
            width: 120
            height: 32
            text: index
        }
    }
}






[image: ../../_images/repeater-number1.png]


As nice as lists of numbered items are, it is sometimes interesting to display a more complex data set. By replacing the integer model value with a JavaScript array, we can achieve that. The contents of the array can be of any type, be it strings, integers or objects. In the example below, a list of strings is used. We can still access and use the index variable, but we also have access to modelData containing the data for each element in the array.

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: ["Enterprise", "Columbia", "Challenger", "Discovery", "Endeavour", "Atlantis"]

        BlueBox {
            width: 100
            height: 32
            radius: 3

            text: modelData + ' (' + index + ')'
        }
    }
}






[image: ../../_images/repeater-array1.png]


Being able to expose the data of an array, you soon find yourself in a position where you need multiple pieces of data per item in the array. This is where models enter the picture. One of the most trivial models, and one of the most commonly used, is the ListModel. A list model is simply a collection of ListElement items. Inside each list element, a number of properties can be bound to values. For instance, in the example below, a name and a color is provided for each element.

The properties bound inside each element are attached to each instantiated item by the repeater. This means that the variables name and surfaceColor are available from within the scope of each Rectangle and Text item created by the repeater. This not only makes it easy to access the data, it also makes it easy to read the source code. The surfaceColor is the color of the circle to the left of the name, not something obscure as data from column i of row j.

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: ListModel {
            ListElement { name: "Mercury"; surfaceColor: "gray" }
            ListElement { name: "Venus"; surfaceColor: "yellow" }
            ListElement { name: "Earth"; surfaceColor: "blue" }
            ListElement { name: "Mars"; surfaceColor: "orange" }
            ListElement { name: "Jupiter"; surfaceColor: "orange" }
            ListElement { name: "Saturn"; surfaceColor: "yellow" }
            ListElement { name: "Uranus"; surfaceColor: "lightBlue" }
            ListElement { name: "Neptune"; surfaceColor: "lightBlue" }
        }

        BlueBox {
            width: 120
            height: 32

            radius: 3
            text: name

            Box {
                anchors.left: parent.left
                anchors.verticalCenter: parent.verticalCenter
                anchors.leftMargin: 4

                width: 16
                height: 16

                radius: 8

                color: surfaceColor
            }
        }
    }
}
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The contents of the repeater that is being instantiated for each item is actually what is bound to the default property, delegate. This means that the code of example Example 01 is synonymous to the code shown below. Notice that the only difference is that the delegate property name is spelled out explicitly in the latter.

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: 10

        delegate: BlueBox {
            width: 100
            height: 32
            text: index
        }
    }
}








Dynamic Views

Repeaters work well for limited and static sets of data, but in the real world, models are commonly more complex – and larger. Here, a smarter solution is needed. For this, Qt Quick provides the ListView and GridView elements. These are both based on a Flickable area, so the user can move around in a larger data set. At the same time, they limit the number of concurrently instantiated delegates. For a large model, that means fewer elements in the scene at once.
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The two elements are similar in their usage. Thus, we will begin with the ListView and then describe the GridView with the former as the starting point of the comparison.

The ListView is similar to the Repeater element. It uses a model, instantiates a delegate and between the delegates, there can be spacing. The listing below shows how a simple setup can look.

import QtQuick 2.5
import "../common"

Background {
    width: 80
    height: 300

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        delegate: numberDelegate
        spacing: 5
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: 40
            height: 40
            text: index
        }
    }
}
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If the model contains more data than can fit onto the screen, the ListView only shows part of the list. However, as a consequence of the default behavior of Qt Quick, the list view does not limit the screen area within which the delegates are shown. This means that delegates may be visible outside the list view, and that the dynamic creation and destruction of delegates outside the list view is visible to the user. To prevent this, clipping must be activated on the ListView element by setting the clip property to true. The illustration below shows the result of this, compared to when the clip property is left as false.


[image: ../../_images/listview-clip1.png]


To the user, the ListView is a scrollable area. It supports kinetic scrolling, which means that it can be flicked to quickly move through the contents. By default, it also can be stretched beyond the end of contents, and then bounces back, to signal to the user that the end has been reached.

The behavior at the end of the view is controlled using the boundsBehavior property. This is an enumerated value and can be configured from the default behavior, Flickable.DragAndOvershootBounds, where the view can be both dragged and flicked outside its boundaries, to Flickable.StopAtBounds, where the view never will move outside its boundaries. The middle ground, Flickable.DragOverBounds lets the user drag the view outside its boundaries, but flicks will stop at the boundary.

It is possible to limit the positions where a view is allowed to stop. This is controlled using the snapMode property. The default behavior, ListView.NoSnap, lets the view stop at any position. By setting the snapMode property to ListView.SnapToItem, the view will always align the top of an item with its top. Finally, the ListView.SnapOneItem, the view will stop no more than one item from the first visible item when the mouse button or touch was released. The last mode is very handy when flipping through pages.


Orientation

The list view provides a vertically scrolling list by default, but horizontal scrolling can be just as useful. The direction of the list view is controlled through the orientation property. It can be set to either the default value, ListView.Vertical, or to ListView.Horizontal. A horizontal list view is shown below.

import QtQuick 2.5
import "../common"

Background {
    width: 480
    height: 80

    ListView {
        anchors.fill: parent
        anchors.margins: 20
        spacing: 4
        clip: true
        model: 100
        orientation: ListView.Horizontal
        delegate: numberDelegate
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: 40
            height: 40
            text: index
        }
    }
}






[image: ../../_images/listview-horizontal1.png]


As you can tell, the direction of the horizontal flows from the left to the right by default. This can be controlled through the layoutDirection property, which can be set to either Qt.LeftToRight or Qt.RightToLeft, depending on the flow direction.




Keyboard Navigation and Highlighting

When using a ListView in a touch based setting, the view itself is enough. In a scenario with a keyboard, or even just arrow keys to select an item, a mechanism to indicate the current item is needed. In QML, this is called highlighting.

Views support a highlight delegate which is shown in the view together with the delegates. It can be considered an additional delegate, only that it is only instantiated once, and is moved into the same position as the current item.

In the example below this is demonstrated. There are two properties involved for this to work. First, the focus property is set to true. This gives the ListView the keyboard focus. Second, the highlight property is set to point out the highlighting delegate to use. The highlight delegate is given the x, y and height of the current item. If the width is not specified, the width of the current item is also used.

In the example, the ListView.view.width attached property is used for width. The attached properties available to delegates are discussed further in the delegate section of this chapter, but it is good to know that the same properties are available to highlight delegates as well.

import QtQuick 2.5
import "../common"

Background {
    width: 240
    height: 300

    ListView {
        id: view
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        delegate: numberDelegate
        spacing: 5

        highlight: highlightComponent
        focus: true
    }

    Component {
        id: highlightComponent

        GreenBox {
            width: ListView.view.width
        }
    }

    Component {
        id: numberDelegate

        Item {
            width: ListView.view.width
            height: 40

            Text {
                anchors.centerIn: parent

                font.pixelSize: 10

                text: index
            }
        }
    }
}
// M1>>
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When using a highlight in conjunction with a ListView, a number of properties can be used to control its behavior. The highlightRangeMode controls how the highlight is affected by what is shown in the view. The default setting, ListView.NoHighlightRange means that the highlight and the visible range of items in the view not are related at all.

The value ListView.StrictlyEnforceRange ensures that the highlight is always visible. If an action attempts to move the highlight outside the visible part of the view, the current item will change accordingly, so that the highlight remains visible.

The middle ground is the ListView.ApplyRange value. It attempts to keep the highlight visible, but does not alter the current item to enforce this. Instead, the highlight is allowed to move out of view if necessary.

In the default configuration, the view is responsible for moving the highlight into position. The speed of the movement and resizing can be controlled, either as a speed or as a duration. The properties involved are highlightMoveSpeed, highlightMoveDuration, highlightResizeSpeed and highlightResizeDuration. By default, the speed is set to 400 pixels per second, and the duration is set to -1, indicating that the speed and distance control the duration. If both a speed and a duration is set, the one that results in the quickest animation is chosen.

To control the movement of the highlight more in detail, the highlightFollowCurrentItem property can be set to false. This means that the view is no longer responsible for the movement of the highlight delegate. Instead, the movement can be controlled through a Behavior or an animation.

In the example below, the y property of the highlight delegate is bound to the ListView.view.currentItem.y attached property. This ensures that the highlight follows the current item. However, as we do not let the view move the highlight, we can control how the element is moved. This is done through the Behavior on y. In the example below, the movement is divided into three steps: fading out, moving, before fading in. Notice how SequentialAnimation and PropertyAnimation elements can be used in combination with the NumberAnimation to create a more complex movement.

    Component {
        id: highlightComponent

        Item {
            width: ListView.view.width
            height: ListView.view.currentItem.height

            y: ListView.view.currentItem.y

            Behavior on y {
                SequentialAnimation {
                    PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 0; duration: 200 }
                    NumberAnimation { duration: 1 }
                    PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 1; duration: 200 }
                }
            }

            GreenBox {
                id: highlightRectangle
                anchors.fill: parent
            }
        }
    }








Header and Footer

At the end of the ListView contents, a header and a footer element can be inserted. These can be considered special delegates places at the beginning or end of the list. For a horizontal list, these will not appear at the head or foot, but rather at then beginning or end, depending on the layoutDirection used.

The example below illustrates how an header and footer can be used to enhance the perception of the beginning and end of a list. There are other uses for these special list elements. For instance, they can be used to keep buttons to load more contents.

import QtQuick 2.5
import "../common"

Background {
    width: 240
    height: 300

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 4

        delegate: numberDelegate
        spacing: 2

        header: headerComponent
        footer: footerComponent
    }

    Component {
        id: headerComponent

        YellowBox {
            width: ListView.view.width
            height: 20
            text: 'Header'

        }
    }

    Component {
        id: footerComponent

        YellowBox {
            width: ListView.view.width
            height: 20
            text: 'Footer'
        }
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: ListView.view.width
            height: 40
            text: 'Item #' + index
        }
    }
}






Nota

Header and footer delegates do not respect the spacing property of a ListView, instead they are placed directly adjacent to the next item delegate in the list. This means that any spacing must be a part of the header and footer items.




[image: ../../_images/listview-header-footer1.png]





The GridView

Using a GridView is very similar to using a ListView. The only real difference is that the grid view places the delegates in a two dimensional grid instead of in a linear list.
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Compared to a list view, the grid view does not rely on spacing and the size of its delegates. Instead, it uses the cellWidth and cellHeight properties to control the dimensions of the contents delegates. Each delegate item is then places in the top left corner of each such cell.

import QtQuick 2.5
import "../common"

Background {
    width: 220
    height: 300

    GridView {
        id: view
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        cellWidth: 45
        cellHeight: 45

        delegate: numberDelegate
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: 40
            height: 40
            text: index
        }
    }
}





A GridView contains headers and footers, can use a highlight delegate and supports snap modes as well as various bounds behaviors. It can also be orientated in different directions and orientations.

The orientation is controlled using the flow property. It can be set to either GridView.LeftToRight or GridView.TopToBottom. The former value fills a grid from the left to the right, adding rows from the top to the bottom. The view is scrollable in the vertical direction. The latter value adds items from the top to the bottom, filling the view from left to right. The scrolling direction is horizontal in this case.

In addition to the flow property, the layoutDirection property can adapt the direction of the grid to left-to-right or right-to-left languages, depending on the value used.






Delegate

When it comes to using models and views in a custom user interface, the delegate plays a huge role in creating a look. As each item in a the model are visualized through a delegate, what is actually visible to the user are the delegates.

Each delegate gets access to a number of attached properties, some from the data model, others from the view. From the model, the properties convey the data for each item to the delegate. From the view, the properties convey state information related to the delegate within the view.

The most commonly used properties attached from the view are ListView.isCurrentItem and ListView.view. The first is a boolean indicating if the item is the current item, while the latter is a read-only reference to the actual view. Through access to the view, it is possible to create general, reusable delegates that adapt to the size and nature of the view in which they are contained. In the example below, the width of each delegate is bound to the width of the view, while the background color of each delegate depends on the attached ListView.isCurrentItem property.

import QtQuick 2.5

Rectangle {
    width: 120
    height: 300

    gradient: Gradient {
        GradientStop { position: 0.0; color: "#f6f6f6" }
        GradientStop { position: 1.0; color: "#d7d7d7" }
    }

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        delegate: numberDelegate
        spacing: 5

        focus: true
    }

    Component {
        id: numberDelegate

        Rectangle {
            width: ListView.view.width
            height: 40

            color: ListView.isCurrentItem?"#157efb":"#53d769"
            border.color: Qt.lighter(color, 1.1)

            Text {
                anchors.centerIn: parent

                font.pixelSize: 10

                text: index
            }
        }
    }
}
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If each item in the model is associated with an action, for instance, clicking an item acts upon it, that functionality is a part of each delegate. This divides the event management between the view, which handles the navigation between items in the view, and the delegate which handles actions on a specific item.

The most basic way to do this is to create a MouseArea within each delegate and act on the onClicked signal. This is demonstrated in the example in the next section of this chapter.


Animating Added and Removed Items

In some cases, the contents shown in a view changes over time. Items are added and removed as the underlaying data model is altered. In these cases, it is often a good idea to employ visual ques to give the user a sense of direction and to help the user understand what data is added or removed.

Conveniently enough, QML views attaches two signals, onAdd and onRemove, to each item delegate. By connecting animations to these, it is easy to create the movement necessary to aid the user in identifying what is taking place.

The example below demonstrates this through the use of a dynamically populated ListModel. At the bottom of the screen, a button for adding new items is shown. When it is clicked, a new item is added to the model using the append method. This triggers the creation of a new delegate in the view, and the emission of the GridView.onAdd signal. The SequentialAnimation attached to the signal causes the item to zoom into view by animating the scale property of the delegate.

When a delegate in the view is clicked, the item is removed from the model through a call to the remove method. This causes the GridView.onRemove signal to be emitted, triggering another SequentialAnimation. This time, however, the destruction of the delegate must be delayed until the animation has completed. To do this, PropertyAction element are used to set the GridView.delayRemove property to true before the animation, and false after. This ensures that the animation is allowed to complete before the delegate item is removed.

import QtQuick 2.5

Rectangle {
    width: 480
    height: 300

    gradient: Gradient {
        GradientStop { position: 0.0; color: "#dbddde" }
        GradientStop { position: 1.0; color: "#5fc9f8" }
    }

    ListModel {
        id: theModel

        ListElement { number: 0 }
        ListElement { number: 1 }
        ListElement { number: 2 }
        ListElement { number: 3 }
        ListElement { number: 4 }
        ListElement { number: 5 }
        ListElement { number: 6 }
        ListElement { number: 7 }
        ListElement { number: 8 }
        ListElement { number: 9 }
    }

    Rectangle {
        anchors.left: parent.left
        anchors.right: parent.right
        anchors.bottom: parent.bottom
        anchors.margins: 20

        height: 40

        color: "#53d769"
        border.color: Qt.lighter(color, 1.1)

        Text {
            anchors.centerIn: parent

            text: "Add item!"
        }

        MouseArea {
            anchors.fill: parent

            onClicked: {
                theModel.append({"number": ++parent.count});
            }
        }

        property int count: 9
    }

    GridView {
        anchors.fill: parent
        anchors.margins: 20
        anchors.bottomMargin: 80

        clip: true

        model: theModel

        cellWidth: 45
        cellHeight: 45

        delegate: numberDelegate
    }

    Component {
        id: numberDelegate

        Rectangle {
            id: wrapper

            width: 40
            height: 40

            gradient: Gradient {
                GradientStop { position: 0.0; color: "#f8306a" }
                GradientStop { position: 1.0; color: "#fb5b40" }
            }

            Text {
                anchors.centerIn: parent

                font.pixelSize: 10

                text: number
            }

            MouseArea {
                anchors.fill: parent

                onClicked: {
                    theModel.remove(index);
                }
            }

            GridView.onRemove: SequentialAnimation {
                PropertyAction { target: wrapper; property: "GridView.delayRemove"; value: true }
                NumberAnimation { target: wrapper; property: "scale"; to: 0; duration: 250; easing.type: Easing.InOutQuad }
                PropertyAction { target: wrapper; property: "GridView.delayRemove"; value: false }
            }

            GridView.onAdd: SequentialAnimation {
                NumberAnimation { target: wrapper; property: "scale"; from: 0; to: 1; duration: 250; easing.type: Easing.InOutQuad }
            }
        }
    }
}








Shape-Shifting Delegates

A commonly used mechanism in lists is that the current item is expanded when activated. This can be used to dynamically let the item expand to fill the screen to enter a new part of the user interface, or it can be used to provide slightly more information for the current item in a given list.

In the example below, each item is expanded to the full extent of the ListView containing it when clicked. The extra spaced is then used to add more information. The mechanism used to control this is a state, expanded that each item delegate can enter, where the item is expanded. In that state, a number of properties are altered.

First of all, the height of the wrapper is set to the height of the ListView. The thumbnail image is then enlarged and moved down to make it move from its small position into its larger position. In addition to this, the two hidden items, the factsView and closeButton are shown by altering the opacity of the elements. Finally, the ListView is setup.

Setting up the ListView involves setting the contentsY, that is the top of the visible part of the view, to the y value of the delegate. The other change is to set interactive of the view to false. This prevents the view from moving. The user can no longer scroll through the list or change the current item.

As the item first is clicked, it enters the expanded state, causing the item delegate to fill the ListView and the contents to rearrange. When the close button is clicked, the state is cleared, causing the delegate to return to its previous state and re-enabling the ListView.

import QtQuick 2.5

Item {
    width: 300
    height: 480

    Rectangle {
        anchors.fill: parent
        gradient: Gradient {
            GradientStop { position: 0.0; color: "#4a4a4a" }
            GradientStop { position: 1.0; color: "#2b2b2b" }
        }
    }

    ListView {
        id: listView

        anchors.fill: parent

        delegate: detailsDelegate
        model: planets
    }

    ListModel {
        id: planets

        ListElement { name: "Mercury"; imageSource: "images/mercury.jpeg"; facts: "Mercury is the smallest planet in the Solar System. It is the closest planet to the sun. It makes one trip around the Sun once every 87.969 days." }
        ListElement { name: "Venus"; imageSource: "images/venus.jpeg"; facts: "Venus is the second planet from the Sun. It is a terrestrial planet because it has a solid, rocky surface. The other terrestrial planets are Mercury, Earth and Mars. Astronomers have known Venus for thousands of years." }
        ListElement { name: "Earth"; imageSource: "images/earth.jpeg"; facts: "The Earth is the third planet from the Sun. It is one of the four terrestrial planets in our Solar System. This means most of its mass is solid. The other three are Mercury, Venus and Mars. The Earth is also called the Blue Planet, 'Planet Earth', and 'Terra'." }
        ListElement { name: "Mars"; imageSource: "images/mars.jpeg"; facts: "Mars is the fourth planet from the Sun in the Solar System. Mars is dry, rocky and cold. It is home to the largest volcano in the Solar System. Mars is named after the mythological Roman god of war because it is a red planet, which signifies the colour of blood." }
    }

    Component {
        id: detailsDelegate

        Item {
            id: wrapper

            width: listView.width
            height: 30

            Rectangle {
                anchors.left: parent.left
                anchors.right: parent.right
                anchors.top: parent.top

                height: 30

                color: "#333"
                border.color: Qt.lighter(color, 1.2)
                Text {
                    anchors.left: parent.left
                    anchors.verticalCenter: parent.verticalCenter
                    anchors.leftMargin: 4

                    font.pixelSize: parent.height-4
                    color: '#fff'

                    text: name
                }
            }


            Rectangle {
                id: image

                width: 26
                height: 26

                anchors.right: parent.right
                anchors.top: parent.top
                anchors.rightMargin: 2
                anchors.topMargin: 2

                color: "black"


                Image {
                    anchors.fill: parent

                    fillMode: Image.PreserveAspectFit

                    source: imageSource
                }
            }

            MouseArea {
                anchors.fill: parent
                onClicked: parent.state = "expanded"
            }

            Item {
                id: factsView

                anchors.top: image.bottom
                anchors.left: parent.left
                anchors.right: parent.right
                anchors.bottom: parent.bottom

                opacity: 0

                Rectangle {
                    anchors.fill: parent

                    gradient: Gradient {
                        GradientStop { position: 0.0; color: "#fed958" }
                        GradientStop { position: 1.0; color: "#fecc2f" }
                    }
                    border.color: '#000000'
                    border.width: 2

                    Text {
                        anchors.fill: parent
                        anchors.margins: 5

                        clip: true
                        wrapMode: Text.WordWrap
                        color: '#1f1f21'

                        font.pixelSize: 12

                        text: facts
                    }
                }
            }

            Rectangle {
                id: closeButton

                anchors.right: parent.right
                anchors.top: parent.top
                anchors.rightMargin: 2
                anchors.topMargin: 2

                width: 26
                height: 26

                color: "#157efb"
                border.color: Qt.lighter(color, 1.1)

                opacity: 0

                MouseArea {
                    anchors.fill: parent
                    onClicked: wrapper.state = ""
                }
            }

            states: [
                State {
                    name: "expanded"

                    PropertyChanges { target: wrapper; height: listView.height }
                    PropertyChanges { target: image; width: listView.width; height: listView.width; anchors.rightMargin: 0; anchors.topMargin: 30 }
                    PropertyChanges { target: factsView; opacity: 1 }
                    PropertyChanges { target: closeButton; opacity: 1 }
                    PropertyChanges { target: wrapper.ListView.view; contentY: wrapper.y; interactive: false }
                }
            ]

            transitions: [
                Transition {
                    NumberAnimation {
                        duration: 200;
                        properties: "height,width,anchors.rightMargin,anchors.topMargin,opacity,contentY"
                    }
                }
            ]
        }
    }
}
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The techniques demonstrated here to expand the delegate to fill the entire view can be employed to make an item delegate shift shape in a much smaller way. For instance, when browsing through a list of songs, the current item could be made slightly larger, accommodating more information about that particular item.






Advanced Techniques


The PathView

The PathView element is the most powerful, but also the most complex, view provided in Qt Quick. It makes it possible to create a view where the items are laid out along an arbitrary path. Along the same path, attributes such as scale, opacity and more can be controlled in detail.

When using the PathView, you have to define a delegate and a path. In addition to this, the PathView itself can be customized through a range of properties. The most common being pathItemCount, controlling the number of visible items at once, and the highlight range control properties preferredHighlightBegin, preferredHighlightEnd and highlightRangeMode, controlling where along the path the current item is to be shown.

Before looking at the highlight range control properties in depth, we must look at the path property. The path property expects a Path element defining the path that the delegates follows as the PathView is being scrolled. The path is defined using the startX and startY properties in combinations with path elements such as PathLine, PathQuad and PathCubic.  These elements are joined together to form a two-dimensional path.


Por fazer

do we cover the line, quad and cubic through an illustration, or do we need a paragraph on them?



When the path has been defined, it is possible to further tune it using PathPercent and PathAttribute elements. These are placed in between path elements and provides a more fine grained control over the path and the delegates on it. The PathPercent controls how large a portion of the path that has been covered between each element. This, in turn, controls the distribution of delegates along the path, as they are distributed proportionally to the percentage progressed.

This is where the preferredHighlightBegin and preferredHighlightEnd properties of the PathView enters the picture. They both expect real values in the range between zero and one. The end is also expected to be more or equal to the beginning. Setting both these properties to, for instance, 0.5, the current item will be displayed at the location fifty percent along the path.

In the Path, the PathAttribute elements are placed between elements, just as PathPercent elements. They let you specify property values that are interpolated along the path. These properties are attached to the delegates and can be used to control any conceivable property.
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The example below demonstrates how the PathView element is used to create view of cards that the user can flip through. It employs a number of tricks to do this. The path consists of three PathLine elements. Using PathPercent elements, the central element is properly centered and provided enough space not to be cluttered by other elements. Using PathAttribute elements, the rotation, size and z-value are controlled.

In addition to the path, the pathItemCount property of the PathView has been set. This controls how densely populated the path will be. The preferredHighlightBegin and preferredHighlightEnd the PathView.onPath is used to control the visibility of the delegates.

    PathView {
        anchors.fill: parent

        delegate: flipCardDelegate
        model: 100

        path: Path {
            startX: root.width/2
            startY: 0

            PathAttribute { name: "itemZ"; value: 0 }
            PathAttribute { name: "itemAngle"; value: -90.0; }
            PathAttribute { name: "itemScale"; value: 0.5; }
            PathLine { x: root.width/2; y: root.height*0.4; }
            PathPercent { value: 0.48; }
            PathLine { x: root.width/2; y: root.height*0.5; }
            PathAttribute { name: "itemAngle"; value: 0.0; }
            PathAttribute { name: "itemScale"; value: 1.0; }
            PathAttribute { name: "itemZ"; value: 100 }
            PathLine { x: root.width/2; y: root.height*0.6; }
            PathPercent { value: 0.52; }
            PathLine { x: root.width/2; y: root.height; }
            PathAttribute { name: "itemAngle"; value: 90.0; }
            PathAttribute { name: "itemScale"; value: 0.5; }
            PathAttribute { name: "itemZ"; value: 0 }
        }

        pathItemCount: 16

        preferredHighlightBegin: 0.5
        preferredHighlightEnd: 0.5
    }





The delegate, shown below, utilizes the attached properties itemZ, itemAngle and itemScale from the PathAttribute elements. It is worth noticing that the attached properties of the delegate only are available from the wrapper. Thus, the rotX property is defined to be able to access the value from within the Rotation element.

Another detail specific to PathView worth noticing is the usage of the attached PathView.onPath property. It is common practice to bind the visibility to this, as this allows the PathView to keep invisible elements for caching purposes. This can usually not be handled through clipping, as the item delegates of a PathView are placed more freely than the item delegates of ListView or GridView views.

    Component {
        id: flipCardDelegate

        BlueBox {
            id: wrapper

            width: 64
            height: 64
            antialiasing: true

            gradient: Gradient {
                GradientStop { position: 0.0; color: "#2ed5fa" }
                GradientStop { position: 1.0; color: "#2467ec" }
            }


            visible: PathView.onPath

            scale: PathView.itemScale
            z: PathView.itemZ

            property variant rotX: PathView.itemAngle
            transform: Rotation {
                axis { x: 1; y: 0; z: 0 }
                angle: wrapper.rotX;
                origin { x: 32; y: 32; }
            }
            text: index
        }
    }





When transforming images or other complex elements on in PathView, a performance optimization trick that is common to use is to bind the smooth property of the Image element to the attached property PathView.view.moving. This means that the images are less pretty while moving, but smoothly transformed when stationary. There is no point spending processing power on smooth scaling when the view is in motion, as the user will not be able to see this anyway.




A Model from XML

As XML is an ubiquitous data format, QML provides the XmlListModel element that exposes XML data as a model. The element can fetch XML data locally or remotely and then processes the data using XPath expressions.

The example below demonstrates fetching images from an RSS flow. The source property refers to a remove location over HTTP, and the data is automatically downloaded.


[image: ../../_images/xmllistmodel-images1.png]


When the data has been downloaded, it is processed into model items and roles. The query property is an XPath representing the base query for creating model items. In this example, the path is /rss/channel/item, so for every item tag, inside a channel tag, inside an RSS tag, a model item is created.

For every model item, a number of roles are extracted. These are represented by XmlRole elements. Each role is given a name, which the delegate can access through an attached property. The actual value of each such property is determined through the XPath query for each role. For instance, the title property corresponds to the title/string() query, returning the contents between the <title> and </title> tags.

The imageSource property is more interesting as it not only extracts a string from the XML, but also processes it. In the stream provided, every item contains an image, represented by an <img src= tag. Using the substring-after and substring-before XPath functions, the location of the image is extracted and returned. Thus the imageSource property can be used directly as the source for an Image element.

import QtQuick 2.5
import QtQuick.XmlListModel 2.0
import "../common"

Background {
    width: 300
    height: 480

    Component {
        id: imageDelegate

        Box {
            width: listView.width
            height: 220
            color: '#333'

            Column {
                Text {
                    text: title
                    color: '#e0e0e0'
                }
                Image {
                    width: listView.width
                    height: 200
                    fillMode: Image.PreserveAspectCrop
                    source: imageSource
                }
            }
        }
    }

    XmlListModel {
        id: imageModel

        source: "http://feeds.nationalgeographic.com/ng/photography/photo-of-the-day/"
        query: "/rss/channel/item"

        XmlRole { name: "title"; query: "title/string()" }
        XmlRole { name: "imageSource"; query: "substring-before(substring-after(description/string(), 'img src=\"'), '\"')" }
    }

    ListView {
        id: listView
        anchors.fill: parent
        model: imageModel
        delegate: imageDelegate
    }
}








Lists with Sections

Sometimes, the data in a list can be divided into sections. It can be as simple as dividing a list of contacts into sections under each letter of the alphabet or music tracks under albums. Using a ListView it is possible to divide a flat list into categories, providing more depth to the experience.


[image: ../../_images/listview-sections1.png]


In order to use sections, the section.property and section.criteria must be setup. The section.property defines which property to use to divide the contents into sections. Here, it is important to know that the model must be sorted so that each section consists of continuous elements, otherwise, the same property name might appear in multiple locations.

The section.criteria can be set to either ViewSection.FullString or ViewSection.FirstCharacter. The first is the default value and can be used for models that have clear sections, for example tracks of music albums. The latter takes the first character of a property and means that any property can be used for this. The most common example being the last name of contacts in a phone book.

When the sections have been defined, they can be accessed from each item using the attached properties ListView.section, ListView.previousSection and ListView.nextSection. Using these properties, it is possible to detect the first and last item of a section and act accordingly.

It is also possible to assign a section delegate component to the section.delegate property of a ListView. This creates a section header delegate which is inserted before any items of a section. The delegate component can access the name of the current section using the attached property section.

The example below demonstrates the section concept by showing a list of space men sectioned after their nationality. The nation is used as the section.property. The section.delegate component, sectionDelegate, shows a heading for each nation, displaying the name of the nation. In each section, the names of the space men are shown using the spaceManDelegate component.

import QtQuick 2.5
import "../common"

Background {
    width: 300
    height: 290

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: spaceMen

        delegate: spaceManDelegate

        section.property: "nation"
        section.delegate: sectionDelegate
    }

    Component {
        id: spaceManDelegate

        Item {
            width: ListView.view.width
            height: 20
            Text {
                anchors.left: parent.left
                anchors.verticalCenter: parent.verticalCenter
                anchors.leftMargin: 8
                font.pixelSize: 12
                text: name
                color: '#1f1f1f'
            }
        }
    }

    Component {
        id: sectionDelegate

        BlueBox {
            width: ListView.view.width
            height: 20
            text: section
            fontColor: '#e0e0e0'
        }
    }


    ListModel {
        id: spaceMen

        ListElement { name: "Abdul Ahad Mohmand"; nation: "Afganistan"; }
        ListElement { name: "Marcos Pontes"; nation: "Brazil"; }
        ListElement { name: "Alexandar Panayotov Alexandrov"; nation: "Bulgaria"; }
        ListElement { name: "Georgi Ivanov"; nation: "Bulgaria"; }
        ListElement { name: "Roberta Bondar"; nation: "Canada"; }
        ListElement { name: "Marc Garneau"; nation: "Canada"; }
        ListElement { name: "Chris Hadfield"; nation: "Canada"; }
        ListElement { name: "Guy Laliberte"; nation: "Canada"; }
        ListElement { name: "Steven MacLean"; nation: "Canada"; }
        ListElement { name: "Julie Payette"; nation: "Canada"; }
        ListElement { name: "Robert Thirsk"; nation: "Canada"; }
        ListElement { name: "Bjarni Tryggvason"; nation: "Canada"; }
        ListElement { name: "Dafydd Williams"; nation: "Canada"; }
    }
}








Tuning Performance

The perceived performance of a view of a model depends very much on the time needed to prepare new delegates. For instance, when scrolling downwards through a ListView, delegates are added just outside the view on the bottom and are removed just as they leave sight over the top of the view. This becomes apparent if the clip property is set to false. If the delegates takes too much time to initialize, it will become apparent to the user as soon as the view is scrolled too quickly.

To work around this issue you can tune the margins, in pixels, on the sides of a scrolling view. This is done using the cacheBuffer property. In the case described above, vertical scrolling, it will control how many pixels above and below the ListView that will contain prepared delegates. Combining this with asynchronously loading Image elements can, for instance, give the images time to load before they are brought into view.

Having more delegates sacrifices memory for a smoother experience and slightly more time to initialize each delegate. This does not solve the problem of complex delegates. Each time a delegate is instantiated, its contents is evaluated and compiled. This takes time, and if it takes too much time, it will lead to a poor scrolling experience. Having many elements in a delegate will also degrade the scrolling performance. It simply costs cycles to move many elements.

To remedy the two later issues, it is recommended to use Loader elements. These can be used to instantiate additional elements when they are needed. For instance, an expanding delegate may use a Loader to postpone the instantiation of its detailed view until it is needed. For the same reason, it is good to keep the amount of JavaScript to a minimum in each delegate. It is better to let them call complex pieced of JavaScript that reside outside each delegate. This reduces the time spent compiling JavaScript each time a delegate is created.






Summary

In this chapter, we have looked at models, views and delegates. For each data entry in a model, a view instantiates a delegate visualizing the data. This separates the data from the presentation.

A model can be a single integer, where the index variable is provided to the delegate. If a JavaScript array is used as model, the modelData variable represents the data of the current index of the array, while index holds the index. For more complex cases, where multiple values needs to be provided by each data item, a ListModel populated with ListElement items is a better solution.

For static models, a Repeater can be used as the view. It is easy to combine it with a positioner such as Row, Column, Grid or Flow to build user interface parts. For dynamic or large data models, a view such as ListView or GridView are more appropriate. These create delegate instances on the fly as they are needed, reducing the number of elements live in the scene at once.

The delegates used in the views can be static items with properties bound to data from the model, or they can be dynamic, with states depending on if they are in focus or not. Using the onAdd and onRemove signals of the view, they can even be animated as they appear and disappear.
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Early on when QML was introduced in Qt4 there were some discussions about if Qt Quick needs an ellipse. The problem with the ellipse is that others can argue other shapes need also be supported. So there is no ellipse in Qt Quick only rectangular shapes. If you needed one in Qt4 you would need to use an image or write your own C++ ellipse element.

To allow scripted drawings Qt 5 introduces the canvas element. The canvas elements provides a resolution-dependent bitmap canvas, which can be used for graphics, games or to paint other visual images on the fly using JavaScript. The canvas element is based on the HTML5 canvas element.

The fundamental idea of the canvas element is to render paths using a context 2D object. The context 2D object, contains the necessary graphics functions, whereas the canvas acts as the drawing canvas. The 2D context supports strokes, fills, gradients, text and a different sets of path creation commands.

Let’s see an example of a simple path drawing:

import QtQuick 2.5

Canvas {
    id: root
    // canvas size
    width: 200; height: 200
    // handler to override for drawing
    onPaint: {
        // get context to draw with
        var ctx = getContext("2d")
        // setup the stroke
        ctx.lineWidth = 4
        ctx.strokeStyle = "blue"
        // setup the fill
        ctx.fillStyle = "steelblue"
        // begin a new path to draw
        ctx.beginPath()
        // top-left start point
        ctx.moveTo(50,50)
        // upper line
        ctx.lineTo(150,50)
        // right line
        ctx.lineTo(150,150)
        // bottom line
        ctx.lineTo(50,150)
        // left line through path closing
        ctx.closePath()
        // fill using fill style
        ctx.fill()
        // stroke using line width and stroke style
        ctx.stroke()
    }
}





This produces a filled rectangle with a starring point at 50,50 and a size of 100 and a stroke used as a border decoration.


[image: ../../_images/rectangle.png]


The stroke width is set to 4 and uses a blue color define by strokeStyle. The final shape is setup to be filled through the fillStyle to a “steelblue” color. Only by calling stroke or fill the actual path will be drawn and they can be used independently from each other. A call to stroke or fill will draw the current path. It’s not possible to store a path for later reuse only a drawing state can be stored and restored.

In QML the Canvas element acts as a container for the drawing. The 2D context object provides the actual drawing operation. The actual drawing needs to be done inside the onPaint event handler.

Canvas {
    width: 200; height: 200
    onPaint: {
        var ctx = getContext("2d")
        // setup your path
        // fill or/and stroke
    }
}





The canvas itself provides a typical two dimensional Cartesian coordinate system, where the top-left is the (0,0) point. A higher y-value goes down and a hight x-value goes to the right.

A typical order of commands for this path based API is the following:


	Setup stroke and/or fill

	Create path

	Stroke and/or fill



    onPaint: {
        var ctx = getContext("2d")

        // setup the stroke
        ctx.strokeStyle = "red"

        // create a path
        ctx.beginPath()
        ctx.moveTo(50,50)
        ctx.lineTo(150,50)

        // stroke path
        ctx.stroke()
    }





This produces a horizontal stroked line from point P1(50,50) to point P2(150,50).
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Nota

Typically you always want to set a start point when you reset your path, so the first operation after beginPath is often moveTo.




Convenient API

For operations on rectangles a convenience API is provided which draws directly and does need a stroke or fill call.

// convenient.qml

import QtQuick 2.5

Canvas {
    id: root
    width: 120; height: 120
    onPaint: {
        var ctx = getContext("2d")
        ctx.fillStyle = 'green'
        ctx.strokeStyle = "blue"
        ctx.lineWidth = 4

        // draw a filles rectangle
        ctx.fillRect(20, 20, 80, 80)
        // cut our an inner rectangle
        ctx.clearRect(30,30, 60, 60)
        // stroke a border from top-left to
        // inner center of the larger rectangle
        ctx.strokeRect(20,20, 40, 40)
    }
}
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Nota

The stroke area extends half of the line width on both sides of the path. A 4 px lineWidth will draw 2 px outside the path and 2 px inside.






Gradients

Canvas can fill shapes with color but also with gradients or images.

    onPaint: {
        var ctx = getContext("2d")

        var gradient = ctx.createLinearGradient(100,0,100,200)
        gradient.addColorStop(0, "blue")
        gradient.addColorStop(0.5, "lightsteelblue")
        ctx.fillStyle = gradient
        ctx.fillRect(50,50,100,100)
    }





The gradient in this example is defined along the starting point (100,0) to the end point (100,200), which gives a vertical line in the middle of our canvas. The gradient stops can be define as a color from 0.0 (gradient start point) to 1.0 (gradient end point). Here we use a “blue” color at 0.0 (100,0) and a “lightsteelblue” color at the 0.5 (100,200) position. The gradient is defined much larger then the rectangle we want to draw, so the rectangle clips gradient to it’s defined geometry.


[image: ../../_images/gradient.png]



Nota

The gradient is defined in canvas coordinates not in coordinates relative to the path to be painted. A canvas does not have the concept of relative coordinates, as we are used to by now from QML.






Shadows

A path can be visually enhanced using shadows with the 2D context object. A shadow is an area around the path with an offset, color and specified blurring. For this you need can specify a shadowColor, shadowOffsetX, shadowOffsetY and a shadowBlur. All of this needs to be defined using the 2D context. The 2D context is your only API to the drawing operations.

A shadow can also be used to create a glow effect around a path. In the next example we create a text “Canvas” with a white glow around. All this on a dark background for better visibility.

First we draw the dark background:

        // setup a dark background
        ctx.strokeStyle = "#333"
        ctx.fillRect(0,0,canvas.width,canvas.height);





then we define our shadow configuration, which will be used for the next path:

        // setup a blue shadow
        ctx.shadowColor = "#2ed5fa";
        ctx.shadowOffsetX = 2;
        ctx.shadowOffsetY = 2;
        ctx.shadowBlur = 10;





Finally we draw our “Canvas” text using a large bold 80px font from the Ubuntu font family.

        // render green text
        ctx.font = 'bold 80px Ubuntu';
        ctx.fillStyle = "#24d12e";
        ctx.fillText("Canvas!",30,180);
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Images

The QML canvas supports image drawing from several sources. To use an image inside the canvas the image needs to be loaded first. We will use the Component.onCompleted handler to load the image in our example.

    onPaint: {
        var ctx = getContext("2d")


        // draw an image
        ctx.drawImage('assets/ball.png', 10, 10)

        // store current context setup
        ctx.save()
        ctx.strokeStyle = '#ff2a68'
        // create a triangle as clip region
        ctx.beginPath()
        ctx.moveTo(110,10)
        ctx.lineTo(155,10)
        ctx.lineTo(135,55)
        ctx.closePath()
        // translate coordinate system
        ctx.clip()  // create clip from the path
        // draw image with clip applied
        ctx.drawImage('assets/ball.png', 100, 10)
        // draw stroke around path
        ctx.stroke()
        // restore previous context
        ctx.restore()

    }

    Component.onCompleted: {
        loadImage("assets/ball.png")
    }





The left shows our ball image painted at the top-left position of 10x10. The right image shows the ball with a clip path applied. Images and any other path can be clipped using another path. The clipping is applied by defining a path and calling the clip() function. All following drawing operations will now be clipped by this path. The clipping is disabled again by restoring the previous state or by setting the clip region to the whole canvas.


[image: ../../_images/canvas_image.png]





Transformation

The canvas allows you to transform the coordinate system in several ways. This is very similar to the transformation offered by QML items. You have the possibility to scale, rotate, translate the coordinate system. In difference to QML the transform origin is always the canvas origin. For example to scale a path around it’s center you would need to translate the canvas origin to the center of the path. It is also possible to apply a more complex transformation using the transform method.

// transform.qml

import QtQuick 2.5

Canvas {
    id: root
    width: 240; height: 120
    onPaint: {
        var ctx = getContext("2d")
        ctx.strokeStyle = "blue"
        ctx.lineWidth = 4

        ctx.beginPath()
        ctx.rect(-20, -20, 40, 40)
        ctx.translate(120,60)
        ctx.stroke()

        // draw path now rotated
        ctx.strokeStyle = "green"
        ctx.rotate(Math.PI/4)
        ctx.stroke()
    }
}
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Besides translate the canvas allows also to scale using scale(x,y) around x and y axis, to rotate using rotate(angle), where the angle is given in radius (360 degree = 2*Math.PI) and to use a matrix transformation using the setTransform(m11, m12, m21, m22, dx, dy).


Nota

To reset any transformation you can call the resetTransform() function to set the transformation matrix back to the identity matrix:

ctx.resetTransform()










Composition Modes

Composition allows you to draw a shape and blend it with the existing pixels. The canvas supports several composition modes using the globalCompositeOperation(mode) operation.


	source-over

	source-in

	source-out

	source-atop



    onPaint: {
        var ctx = getContext("2d")
        ctx.globalCompositeOperation = "xor"
        ctx.fillStyle = "#33a9ff"

        for(var i=0; i<40; i++) {
            ctx.beginPath()
            ctx.arc(Math.random()*400, Math.random()*200, 20, 0, 2*Math.PI)
            ctx.closePath()
            ctx.fill()
        }
    }





This little examples iterates over a list of composite modes and generates a rectangle with a circle.

    property var operation : [
        'source-over', 'source-in', 'source-over',
        'source-atop', 'destination-over', 'destination-in',
        'destination-out', 'destination-atop', 'lighter',
        'copy', 'xor', 'qt-clear', 'qt-destination',
        'qt-multiply', 'qt-screen', 'qt-overlay', 'qt-darken',
        'qt-lighten', 'qt-color-dodge', 'qt-color-burn',
        'qt-hard-light', 'qt-soft-light', 'qt-difference',
        'qt-exclusion'
        ]

    onPaint: {
        var ctx = getContext('2d')

        for(var i=0; i<operation.length; i++) {
            var dx = Math.floor(i%6)*100
            var dy = Math.floor(i/6)*100
            ctx.save()
            ctx.fillStyle = '#33a9ff'
            ctx.fillRect(10+dx,10+dy,60,60)
            // TODO: does not work yet
            ctx.globalCompositeOperation = root.operation[i]
            ctx.fillStyle = '#ff33a9'
            ctx.globalAlpha = 0.75
            ctx.beginPath()
            ctx.arc(60+dx, 60+dy, 30, 0, 2*Math.PI)
            ctx.closePath()
            ctx.fill()
            ctx.restore()
        }
    }








Pixel Buffers

When working with the canvas you are able to retrieve pixel data from the canvas to read or manipulate the pixels of your canvas. To read the image data use createImageData(sw,sh) or getImageData(sx,sy,sw,sh). Both functions return an ImageData object with a width, height and a data variable. The data variable contains a one-dimensional array of the pixel data retrieved in the RGBA format, where each value varies in the range of 0 to 255. To set pixels on the canvas you can use the putImageData(imagedata,, dx, dy) function.

Another way to retrieve the content of the canvas is to store the data into an image. This can be achieved with the Canvas functions save(path) or toDataURL(mimeType), where the later function returns an image url, which can be used to be loaded by an Image element.

import QtQuick 2.5

Rectangle {
    width: 240; height: 120
    Canvas {
        id: canvas
        x: 10; y: 10
        width: 100; height: 100
        property real hue: 0.0
        onPaint: {
            var ctx = getContext("2d")
            var x = 10 + Math.random(80)*80
            var y = 10 + Math.random(80)*80
            hue += Math.random()*0.1
            if(hue > 1.0) { hue -= 1 }
            ctx.globalAlpha = 0.7
            ctx.fillStyle = Qt.hsla(hue, 0.5, 0.5, 1.0)
            ctx.beginPath()
            ctx.moveTo(x+5,y)
            ctx.arc(x,y, x/10, 0, 360)
            ctx.closePath()
            ctx.fill()
        }
        MouseArea {
            anchors.fill: parent
            onClicked: {
                var url = canvas.toDataURL('image/png')
                print('image url=', url)
                image.source = url
            }
        }
    }

    Image {
        id: image
        x: 130; y: 10
        width: 100; height: 100
    }

    Timer {
        interval: 1000
        running: true
        triggeredOnStart: true
        repeat: true
        onTriggered: canvas.requestPaint()
    }
}





In our little example we paint every second a small circle in the left canvas. When the use clicks on the mouse area the canvas content is stored and a image url is retrieved. On the right side of our example the image is then displayed.


Nota

Retrieving image data seems not to work currently in the Qt 5 Alpha SDK.






Canvas Paint

In this example we would like to create a small paint application using the Canvas element.
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For this we arrange four color squares on the top of our scene using a row positioner. A color square is a simple rectangle filled with a mouse area to detect clicks.

    Row {
        id: colorTools
        anchors {
            horizontalCenter: parent.horizontalCenter
            top: parent.top
            topMargin: 8
        }
        property variant activeSquare: red
        property color paintColor: "#33B5E5"
        spacing: 4
        Repeater {
            model: ["#33B5E5", "#99CC00", "#FFBB33", "#FF4444"]
            ColorSquare {
                id: red
                color: modelData
                active: parent.paintColor == color
                onClicked: {
                    parent.paintColor = color
                }
            }
        }
    }





The colors are stored in an array and the paint color. When one the user clicks in one of the squares the color of the square is assigned to the paintColor property of the row named colorTools.

To enable tracking of the mouse events on the canvas we have a MouseArea covering the canvas element and hooked up the pressed and position changed handlers.

    Canvas {
        id: canvas
        anchors {
            left: parent.left
            right: parent.right
            top: colorTools.bottom
            bottom: parent.bottom
            margins: 8
        }
        property real lastX
        property real lastY
        property color color: colorTools.paintColor

        onPaint: {
            var ctx = getContext('2d')
            ctx.lineWidth = 1.5
            ctx.strokeStyle = canvas.color
            ctx.beginPath()
            ctx.moveTo(lastX, lastY)
            lastX = area.mouseX
            lastY = area.mouseY
            ctx.lineTo(lastX, lastY)
            ctx.stroke()
        }
        MouseArea {
            id: area
            anchors.fill: parent
            onPressed: {
                canvas.lastX = mouseX
                canvas.lastY = mouseY
            }
            onPositionChanged: {
                canvas.requestPaint()
            }
        }
    }





A mouse press stores the initial mouse position into the lastX and lastY properties. Every change on the mouse position triggers a paint request on the canvas, which will result into calling the onPaint handler.

To finally draw the users stroke, in the onPaint handler we begin a new path and move to the last position. Then we gather the new position from the mouse area and draw a line with the selected color to the new position. The mouse position is stored as the new last position.




Porting from HTML5 Canvas


	https://developer.mozilla.org/en/Canvas_tutorial/Transformations

	http://en.wikipedia.org/wiki/Spirograph



It is fairly easy to port a HTML5 canvas graphics over to use the QML canvas. From the thousands of examples, we picked one and tried it ourself.

Spiro Graph

We use a spiro graph [http://en.wikipedia.org/wiki/Spirograph] example from the Mozilla project as our foundation. The original HTML5 was posted as part of the canvas tutorial [https://developer.mozilla.org/en/Canvas_tutorial/Transformations].

There where a few lines we needed to change:


	Qt Quick requires you to declare variable, so we needed to add some var declarations


for (var i=0;i<3;i++) {
    ...
}










	Adapted the draw method to receive the Context2D object


function draw(ctx) {
    ...
}










	we needed to adapt the translation for each spiro due to different sizes


ctx.translate(20+j*50,20+i*50);












Finally we inmpleted our onPaint handler. Inside we acquire a context and call our draw function.

    onPaint: {
        var ctx = getContext("2d");
        draw(ctx);
    }





The result is a ported spiro graph graphics running using the QML canvas
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That’s all.

Glowing Lines

Here is another more complicated port from the W3C organization. The original pretty glowing lines [http://www.w3.org/TR/2dcontext/#examples] has some pretty nice aspects, which makes the porting more challenging.
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<!DOCTYPE HTML>
<html lang="en">
<head>
    <title>Pretty Glowing Lines</title>
</head>
<body>

<canvas width="800" height="450"></canvas>
<script>
var context = document.getElementsByTagName('canvas')[0].getContext('2d');

// initial start position
var lastX = context.canvas.width * Math.random();
var lastY = context.canvas.height * Math.random();
var hue = 0;

// closure function to draw
// a random bezier curve with random color with a glow effect
function line() {

    context.save();

    // scale with factor 0.9 around the center of canvas
    context.translate(context.canvas.width/2, context.canvas.height/2);
    context.scale(0.9, 0.9);
    context.translate(-context.canvas.width/2, -context.canvas.height/2);

    context.beginPath();
    context.lineWidth = 5 + Math.random() * 10;

    // our start position
    context.moveTo(lastX, lastY);

    // our new end position
    lastX = context.canvas.width * Math.random();
    lastY = context.canvas.height * Math.random();

    // random bezier curve, which ends on lastX, lastY
    context.bezierCurveTo(context.canvas.width * Math.random(),
    context.canvas.height * Math.random(),
    context.canvas.width * Math.random(),
    context.canvas.height * Math.random(),
    lastX, lastY);

    // glow effect
    hue = hue + 10 * Math.random();
    context.strokeStyle = 'hsl(' + hue + ', 50%, 50%)';
    context.shadowColor = 'white';
    context.shadowBlur = 10;
    // stroke the curve
    context.stroke();
    context.restore();
}

// call line function every 50msecs
setInterval(line, 50);

function blank() {
    // makes the background 10% darker on each call
    context.fillStyle = 'rgba(0,0,0,0.1)';
    context.fillRect(0, 0, context.canvas.width, context.canvas.height);
}

// call blank function every 50msecs
setInterval(blank, 40);

</script>
</body>
</html>





In HTML5 the Context2D object can paint at any time on the canvas. In QML it can only point inside the onPaint handler. The timer in usage with setInterval triggers in HTML5 the stroke of the line or to blank the screen. Due to the different handling in QML it’s not possible to just call these functions, because we need to go through the onPaint handler. Also the color presentations needs to be adapted. Let’s go through the changes on by one.

Everything starts with the canvas element. For simplicity we just use the Canvas element as the root element of our QML file.

import QtQuick 2.5

Canvas {
   id: canvas
   width: 800; height: 450

   ...
}





To untangle the direct call of the functions through the setInterval, we replace the setInterval calls with two timers which will request a repaint. A Timer is triggered after a short interval and allows us to execute some code. As we can’t tell the paint function which operation we would like trigger we define for each operation a bool flag request an operation and trigger then a repaint request.

Here is the code for the line operation. The blank operation is similar.

...
property bool requestLine: false

Timer {
    id: lineTimer
    interval: 40
    repeat: true
    triggeredOnStart: true
    onTriggered: {
        canvas.requestLine = true
        canvas.requestPaint()
    }
}

Component.onCompleted: {
    lineTimer.start()
}
...





Now we have a an indication which (line or blank or even both) operation we need to perform during the onPaint operation. As we enter the onPaint handler for each paint request we need to extract the initialization of the variable into the canvas element.

Canvas {
    ...
    property real hue: 0
    property real lastX: width * Math.random();
    property real lastY: height * Math.random();
    ...
}





Now our paint function should look like this:

onPaint: {
    var context = getContext('2d')
    if(requestLine) {
        line(context)
        requestLine = false
    }
    if(requestBlank) {
        blank(context)
        requestBlank = false
    }
}





The line function was extracted gor a canvas as argument.

function line(context) {
    context.save();
    context.translate(canvas.width/2, canvas.height/2);
    context.scale(0.9, 0.9);
    context.translate(-canvas.width/2, -canvas.height/2);
    context.beginPath();
    context.lineWidth = 5 + Math.random() * 10;
    context.moveTo(lastX, lastY);
    lastX = canvas.width * Math.random();
    lastY = canvas.height * Math.random();
    context.bezierCurveTo(canvas.width * Math.random(),
        canvas.height * Math.random(),
        canvas.width * Math.random(),
        canvas.height * Math.random(),
        lastX, lastY);

    hue += Math.random()*0.1
    if(hue > 1.0) {
        hue -= 1
    }
    context.strokeStyle = Qt.hsla(hue, 0.5, 0.5, 1.0);
    // context.shadowColor = 'white';
    // context.shadowBlur = 10;
    context.stroke();
    context.restore();
}





The biggest change was the use of the QML Qt.rgba() and Qt.hsla() functions, which required to adapt the values to the used 0.0 ... 1.0 range in QML.

Same applies to the blank function.

function blank(context) {
    context.fillStyle = Qt.rgba(0,0,0,0.1)
    context.fillRect(0, 0, canvas.width, canvas.height);
}





The final result will look similar to this.


[image: ../../_images/glowlines.png]



Veja também


	W3C HTML Canvas 2D Context Specification [http://www.w3.org/TR/2dcontext/]

	Mozilla Canvas Documentation [https://developer.mozilla.org/en/HTML/Canvas]

	HTML5 Canvas Tutorial [http://www.html5canvastutorials.com/]
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Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



Particles are a computer graphics techniques to visualize certain graphics effects. Typical effects could be: falling leaves, fire, explosions, meteors, clouds, etc.

It differs from other graphics rendering as particles rendering is based on fuzzy aspects. The outcome is not exactly predictable on pixel-base. Parameters to the particle system describe the boundaries for the stochastic simulation. The phenomena rendered with particles is often difficult to visualize with traditional rendering techniques. The good thing is you can let QML elements interact with the particles systems. Also as parameters are expressed as properties they can be animated using the traditional animation techniques.


Concept

In the heart of the particle simulation is the ParticleSystem which controls the shared time-line. A scene can have several particles systems, each of them with an independent time-line. A particle is emitted using an Emitter element and visualized with a ParticlePainter, which can be an image, QML item or a shader item.
An emitter provides also the direction for particle using a vector space. A particle ones emitted can’t be manipulated by the emitter anymore. The particle module provides the Affector, which allows to manipulate parameters of the particle after is has been emitted.

Particles in a system can share timed transitions using the ParticleGroup element. By default every particle is on the empty (‘’) group.


[image: ../../_images/particlesystem.png]



	ParticleSystem - manages shared time-line between emitters

	Emitter - emits logical particles into the system

	ParticlePainter - particles are visualized by a particle painter

	Direction - vector space for emitted particles

	ParticleGroup - every particle is a member of a group

	Affector - manipulates particles after they have been emitted






Simple Simulation

Let us have a look at a very simple simulation to get started. Qt Quick makes it actually very simple to get started with particle rendering. For this we need:


	A ParticleSystem which binds all elements to an simulation

	An Emitter which emits particles into the system

	A ParticlePainter derived element, which visualize the particles



import QtQuick 2.5
import QtQuick.Particles 2.0

Rectangle {
    id: root
    width: 480; height: 160
    color: "#1f1f1f"

    ParticleSystem {
        id: particleSystem
    }

    Emitter {
        id: emitter
        anchors.centerIn: parent
        width: 160; height: 80
        system: particleSystem
        emitRate: 10
        lifeSpan: 1000
        lifeSpanVariation: 500
        size: 16
        endSize: 32
        Tracer { color: 'green' }
    }

    ImageParticle {
        source: "assets/particle.png"
        system: particleSystem
    }
}





The outcome of the example will look like this:


[image: ../../_images/simpleparticles.png]


We start with a a 80x80 pixel dark rectangle as our root element and background. Therein we declare a ParticleSystem. This is always the first step as the system binds all other elements together. Typically the next element is the Emitter, which defines the emitting area based on it’s bounding box and basic parameters for the to be emitted particles. The emitter is bound to the system using the system property.

The emitter in this example emits 10 particles per second (emitRate: 10) over the area of the emitter with each a life span of 1000 msecs (lifeSpan : 1000) and a life span variation between emitted particles of 500 msec (lifeSpanVariation: 500). A particle shall start with a size of 16px (size: 16) and at the end of it’s life shall be 32px (endSize: 32).

The green bordered rectangle is a tracer element to show the geometry of the emitter. This visualizes that also while the particles are emitted inside the emitters bounding box the rendering is not limited to the emitters bounding box. The rendering position depends upon life-span and direction of the particle. This will get more clear when we look into howto change the direction particles.

The emitter emits logical particles. A logical particle is visualized using a ParticlePainter in this example we use an ImageParticle, which takes an image URL as the source property. The image particle has also several other properties, which control the appearance of the average particle.


	emitRate: particles emitted per second (defaults to 10 per second)

	lifeSpan: milliseconds the particle should last for (defaults to 1000 msecs)

	size, endSize: size of the particles at the beginning and end of their life  (defaults to 16 px)



Changing these properties can influence the result in a drastically way

    Emitter {
        id: emitter
        anchors.centerIn: parent
        width: 20; height: 20
        system: particleSystem
        emitRate: 40
        lifeSpan: 2000
        lifeSpanVariation: 500
        size: 64
        sizeVariation: 32
        Tracer { color: 'green' }
    }





Besides increasing the emit rate to 40 and the life span to 2 seconds the size now starts at 64 pixel and decreases 32 pixel at the end of a particle life span.


[image: ../../_images/simpleparticles2.png]


Increasing the endSize even more would lead to a more or less white background. Please note also when the particles are only emitted in the area defined by the emitter the rendering is not constrained to it.




Particle Parameters

We saw already how to change the behavior of the emitter to change our simulation. The particle painter used allows us how the particle image is visualized for each particle.

Coming back to our example we update our ImageParticle. First we change our particle image to a small sparking star image:

ImageParticle {
    ...
    source: 'assets/star.png'
}





The particle shall be colorized in an gold color which varies from particle to particle by +/- 20%:

color: '#FFD700'
colorVariation: 0.2





To make the scene more alive we would like to rotate the particles. Each particle should start by 15 degrees clockwise and varies between particles by +/-5 degrees. Additional the particle should continuously rotate with the velocity of 45 degrees per second. The velocity shall also vary from particle to particle by +/- 15 degrees per second:

rotation: 15
rotationVariation: 5
rotationVelocity: 45
rotationVelocityVariation: 15





Last but not least, we change the entry effect for the particle. This is the effect used when a particle comes to life. In this case we want to use the scale effect:

entryEffect: ImageParticle.Scale





So now we have rotating golden stars appearing all over the place.


[image: ../../_images/particleparameters.png]


Here is the code we changed for the image particle in one block.

    ImageParticle {
        source: "assets/star.png"
        system: particleSystem
        color: '#FFD700'
        colorVariation: 0.2
        rotation: 0
        rotationVariation: 45
        rotationVelocity: 15
        rotationVelocityVariation: 15
        entryEffect: ImageParticle.Scale
    }








Directed Particles

We have seen particles can rotate. But particles can also have a trajectory. The trajectory is specified as the velocity or acceleration of particles defined by a stochastic direction also named a vector space.

There are different vector spaces available to define the velocity or acceleration of a particle:


	AngleDirection - a direction that varies in angle

	PointDirection - a direction that varies in x and y components

	TargetDirection - a direction towards the target point




[image: ../../_images/particle_directions.png]


Let’s try to move the particles over from the left to the right side of our scene by using the velocity directions.

We first try the AngleDirection. For this we need to specify the AngleDirection as an element of the velocity property of our emitter:

velocity: AngleDirection { }





The angle where the particles are emitted is specified using the angle property. The angle is provided as value between 0..360 degree and 0 points to the right. For our example we would like the particles to move to the right so 0 is already the right direction. The particles shall spread by +/- 5 degree:

velocity: AngleDirection {
    angle: 0
    angleVariation: 15
}





Now we have set our direction, the next thing is to specify the velocity of the particle. This is defined by a magnitude. The magnitude is defined in pixels per seconds. As we have ca. 640px to travel 100 seems to be a good number. This would mean by an average life time of 6.4 secs a particle would cross the open space. To make the traveling of the particles more interesting we vary the magnitude using the magnitudeVariation and set this to the half of the magnitude:

velocity: AngleDirection {
    ...
    magnitude: 100
    magnitudeVariation: 50
}






[image: ../../_images/angledirection.png]


Here is the full source code, with an average life time set to 6.4 seconds. We set the emitter width and height to 1px. This means all particles are emitted at the same location and from thereon travel based on our given trajectory.

    Emitter {
        id: emitter
        anchors.left: parent.left
        anchors.verticalCenter: parent.verticalCenter
        width: 1; height: 1
        system: particleSystem
        lifeSpan: 6400
        lifeSpanVariation: 400
        size: 32
        velocity: AngleDirection {
            angle: 0
            angleVariation: 15
            magnitude: 100
            magnitudeVariation: 50
        }
    }





So what is then the acceleration doing? The acceleration add a acceleration vector to each particle, which changes the velocity vector over time. For example let’s make a trajectory like an arc of stars. For this we change our velocity direction to -45 degree and remove the variations, to better visualize a coherent arc:

velocity: AngleDirection {
    angle: -45
    magnitude: 100
}





The acceleration direction shall be 90 degree (down direction) and we choose one fourth of the velocity magnitude for this:

acceleration: AngleDirection {
    angle: 90
    magnitude: 25
}





The result is an arc going from the center left to the bottom right.


[image: ../../_images/angledirection2.png]


The values are discovered by try-and-error.

Here is the full code of our emitter.

    Emitter {
        id: emitter
        anchors.left: parent.left
        anchors.verticalCenter: parent.verticalCenter
        width: 1; height: 1
        system: particleSystem
        emitRate: 10
        lifeSpan: 6400
        lifeSpanVariation: 400
        size: 32
        velocity: AngleDirection {
            angle: -45
            angleVariation: 0
            magnitude: 100
        }
        acceleration: AngleDirection {
            angle: 90
            magnitude: 25
        }
    }





In the next example we would like that the particles again travel from left to right but this time we use the PointDirection vector space.

A PointDirection derived it’s vector space from a x and y component. For example if you want the particles travel in a 45 degree vector, you need to specify the same value for x and y.

In our case we want the particles travel from left-to-right building a 15 degree cone. For this we specify a PointDirection as our velocity vector space:

velocity: PointDirection { }





To achieve a traveling velocity of 100 px per seconds we set our x component to 100. For the 15 degree (which is 1/6 th of 90 degree) we specify an y variation of 100/6:

velocity: PointDirection {
    x: 100
    y: 0
    xVariation: 0
    yVariation: 100/6
}





The result should be particles traveling in a 15 degree cone from right to left.


[image: ../../_images/pointdirection.png]


Now coming to our last contender, the TargetDirection. The target direction allows us to specify a target point as an x and y coordinate relative to the emitter or an item. When an item is specified the center of the item will become the target point. You can achieve the 15 degree cone by specifying a target variation of 1/6 th of the x target:

velocity: TargetDirection {
    targetX: 100
    targetY: 0
    targetVariation: 100/6
    magnitude: 100
}






Nota

Target direction are great to use when you have a specific x/y coordinate you want the stream of particles emitted towards.



I spare you the image as it looks the same as the previous one, instead I have a quest for you.

In the following image the red and the green circle specify each a target item for the target direction of the velocity respective the acceleration property. Each target direction has the same parameters. Here the question: Who is responsible for velocity and who is for acceleration?


[image: ../../_images/directionquest.png]





Particle Painters

Till now we have only used the image based particle painter to visualize particles. Qt comes also with other particle painters:


	ItemParticle: delegate based particle painter

	CustomParticle: shader based particle painter



The ItemParticle can be used to emit QML items as particles. For this you need to specify your own delegate to the particle.

    ItemParticle {
        id: particle
        system: particleSystem
        delegate: itemDelegate
    }





Our delegate in this case is a random image (using Math.random()), visualized with a white border and a random size.

    Component {
        id: itemDelegate
        Item {
            id: container
            width: 32*Math.ceil(Math.random()*3); height: width
            Image {
                anchors.fill: parent
                anchors.margins: 4
                source: 'assets/'+images[Math.floor(Math.random()*9)]
            }
        }
    }





We emit 4 images per second with a life span of 4 seconds each. The particles fade automatically in and out.


[image: ../../_images/itemparticle.png]


For more dynamic cases it is also possible to create an item on your own and let the particle take control of it with take(item, priority). By this the particle simulation takes control of your particle and handles the item like an ordinary particle. You can get back control of the item by using give(item). You can influence item particles even more by halt their life progression using freeze(item) and resume their life using unfreeze(item).




Affecting Particles

Particles are emitted by the emitter. After a particle was emitted it can’t be changed anymore by the emitter. The affectors allows you to influence particles after they have been emitted.

Each type of affector affects particles in a different way:


	Age - alter where the particle is in its life-cycle

	Attractor - attract particles towards a specific point

	Friction - slows down movement proportional to the particle’s current velocity

	Gravity - set’s an acceleration in an angle

	Turbulence - fluid like forces based on a noise image

	Wander -  randomly vary the trajectory

	GroupGoal -  change the state of a group of a particle

	SpriteGoal - change the state of a sprite particle



Age

Allows particle to age faster. the lifeLeft property specified how much life a particle should have left.

    Age {
        anchors.horizontalCenter: parent.horizontalCenter
        width: 240; height: 120
        system: particleSystem
        advancePosition: true
        lifeLeft: 1200
        once: true
        Tracer {}
    }





In the example we shorten the life of the upper particles once, when they reach the age affector to 1200 msecs. As we have set the advancePosition to true, we see the particle appearing again on a position when the particle has 1200 msecs left to life.


[image: ../../_images/age.png]


Attractor

The attractor attracts particles towards a specific point. The point is specified using pointX and pointY, which is relative to the attractor geometry. The strength specifies the force of attraction. In our example we let particles travel from left to right. The attractor is placed on the top and half of the particles travel through the attractor. Affector only affect particles while they are in their bounding box. This split allows us to see the normal stream and the affected stream simultaneous.

    Attractor {
        anchors.horizontalCenter: parent.horizontalCenter
        width: 160; height: 120
        system: particleSystem
        pointX: 0
        pointY: 0
        strength: 1.0
        Tracer {}
    }





It’s easy to see that the upper half of the particles are affected by the attracted to the top. The attraction point is set to top-left (0/0 point) of the attractor with a force of 1.0.


[image: ../../_images/attractor.png]


Friction

The friction affector slows down particles by a factor until a certain threshold is reached.

    Friction {
        anchors.horizontalCenter: parent.horizontalCenter
        width: 240; height: 120
        system: particleSystem
        factor : 0.8
        threshold: 25
        Tracer {}
    }





In the upper friction area, the particles are slowed down by a factor of 0.8 until the particle reach 25 pixels per seconds velocity. The threshold act’s like a filter. Particles traveling above the threshold velocity are slowed down by the given factor.
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Gravity

The gravity affector applies an acceleration In the example we stream the particles from the bottom to the top using an angle direction. The right side is unaffected, where on the left a gravity affect is applied. The gravity is angled to 90 degree (bottom-direction) with a magnitude of 50.

    Gravity {
        width: 240; height: 240
        system: particleSystem
        magnitude: 50
        angle: 90
        Tracer {}
    }





Particles on the left side try to climb up, but the steady applied acceleration towards the bottom drags them into the direction of the gravity.


[image: ../../_images/gravity.png]


Turbulence

The turbulence affector, applies a chaos map of force vectors to the particles. The chaos map is defined by a noise image, which can be define with the noiseSource property. The strength defines how strong the vector will be applied on the particle movements.

    Turbulence {
        anchors.horizontalCenter: parent.horizontalCenter
        width: 240; height: 120
        system: particleSystem
        strength: 100
        Tracer {}
    }





In the upper area of the example, particles are influenced by the turbulence. Their movement is more erratic. The amount of erratic deviation from the original path is defined by the strength.
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Wander

The wander manipulates the trajectory. With the property affectedParameter can be specified which parameter (velocity, position or acceleration) is affector by the wander. The pace property specifies the maximum of attribute changes per second. The yVariance and yVariance specifies the influence on x and y component of the particle trajectory.

    Wander {
        anchors.horizontalCenter: parent.horizontalCenter
        width: 240; height: 120
        system: particleSystem
        affectedParameter: Wander.Position
        pace: 200
        yVariance: 240
        Tracer {}
    }





In the top wander affector particles are shuffled around by random trajectory changes. In this case the position is changed 200 times per second in the y-direction.


[image: ../../_images/wander.png]





Particle Groups

At the beginning of this chapter we stated particles are in groups, which is by default the empty group (‘’). Using the GroupGoal affector is it possible to let the particle change groups. To visualize this we would like to create a small firework, where rockets start into space and explode in the air into a spectacular firework.


[image: ../../_images/firework_teaser.png]


The example is divided into 2 parts. The 1st part called “Launch Time” is concerned to setup the scene and introduce particle groups and the 2nd part called “Let there be fireworks” focuses on the group changes.

Let’s get start!

Launch Time

To get it going we create a typical dark scene:

import QtQuick 2.5
import QtQuick.Particles 2.0

Rectangle {
    id: root
    width: 480; height: 240
    color: "#1F1F1F"
    property bool tracer: false
}





The tracer property will be used to switch the tracer scene wide on and off. The next thing is to declare our particle system:

ParticleSystem {
    id: particleSystem
}





And our two image particles (one for the rocket and one for the exhaust smoke):

ImageParticle {
    id: smokePainter
    system: particleSystem
    groups: ['smoke']
    source: "assets/particle.png"
    alpha: 0.3
    entryEffect: ImageParticle.None
}

ImageParticle {
    id: rocketPainter
    system: particleSystem
    groups: ['rocket']
    source: "assets/rocket.png"
    entryEffect: ImageParticle.None
}





You can see in on the images, they use the groups property to declare to which group the particle belong. It is enough to just declare a name and an implicit group will be created by Qt Quick.

Now it’s time to emit some rockets into the air. For this we create an emitter on the bottom of our scene and set the velocity into an upward direction. To simulate some gravity we set an acceleration downwards:

Emitter {
    id: rocketEmitter
    anchors.bottom: parent.bottom
    width: parent.width; height: 40
    system: particleSystem
    group: 'rocket'
    emitRate: 2
    maximumEmitted: 4
    lifeSpan: 4800
    lifeSpanVariation: 400
    size: 32
    velocity: AngleDirection { angle: 270; magnitude: 150; magnitudeVariation: 10 }
    acceleration: AngleDirection { angle: 90; magnitude: 50 }
    Tracer { color: 'red'; visible: root.tracer }
}





The emitter is in the group ‘rocket’, the same as our rocket particle painter. Through the group name they are bound together. The emitter emits particles into the group ‘rocket’ and the rocket particle painter will pain them.

For the exhaust we use a trail emitter, which follows our rocket. It declares an own group called ‘smoke’ and follows the particles from the ‘rocket’ group:

TrailEmitter {
    id: smokeEmitter
    system: particleSystem
    emitHeight: 1
    emitWidth: 4
    group: 'smoke'
    follow: 'rocket'
    emitRatePerParticle: 96
    velocity: AngleDirection { angle: 90; magnitude: 100; angleVariation: 5 }
    lifeSpan: 200
    size: 16
    sizeVariation: 4
    endSize: 0
}





The smoke tis directed downwards to simulate the force the smoke comes out of the rocket. The emitHeight and emitWidth specify the are around the particle followed from where the smoke particles shall be emitted. If this is not specified than the are of the particle followed is taken but for this example we want to increase the effect that the particles stem from a central point near the end of the rocket.

If you start the example now you will see the rockets fly up and some are even flying out of the scene. As this is not really wanted we need to slow them down before they leave the screen. A friction affector can be used here to slow the particles down to a minimum threshold:

Friction {
    groups: ['rocket']
    anchors.top: parent.top
    width: parent.width; height: 80
    system: particleSystem
    threshold: 5
    factor: 0.9
}





In the friction affector you also need to declare which groups of particles it shall affect. The friction will slow all rockets, which are 80 pixel downwards from the top of the screen down by a factor of 0.9 (try 100 and you will see they almost stop immediately) until they reach a velocity of 5 pixel per second. As the particles have still an acceleration downwards applied the rockets will start sinking toward the ground after they reach the end of their life-span.

As climbing up in the air is hard work and a very unstable situation we want to simulate some turbulences while the ship is climbing:

Turbulence {
    groups: ['rocket']
    anchors.bottom: parent.bottom
    width: parent.width; height: 160
    system: particleSystem
    strength: 25
    Tracer { color: 'green'; visible: root.tracer }
}





Also the turbulence need to declare which groups it shall affect. The turbulence it self reaches from the bottom 160 pixel upwards (until it reaches the border of the friction). They also could overlap.

When you start the example now you will see the rockets are climbing up and then will be slowed down by the friction and fall back to ground by the still applied downwards acceleration. The next thing would be to start the firework.


[image: ../../_images/firework_rockets.png]



Nota

The image shows the scene with the tracers enabled to show the different areas. Rocket particles are emitted in the red area and then affected by the turbulence in the blue area. Finally they are slowed down by the friction affector in the green area and start falling again, because of the steady applied downwards acceleration.



Let there be fireworks

To be able to change the rocket into a beautiful firework we need add a ParticleGroup to encapsulate the changes:

ParticleGroup {
    name: 'explosion'
    system: particleSystem
}





We change to the particle group using a GroupGoal affector. The group goal affector is placed near the vertical center of the screen and it will affect the group ‘rocket’. With the groupGoal property we set the target group for the change to ‘explosion’, our earlier defined particle group:

GroupGoal {
    id: rocketChanger
    anchors.top: parent.top
    width: parent.width; height: 80
    system: particleSystem
    groups: ['rocket']
    goalState: 'explosion'
    jump: true
    Tracer { color: 'blue'; visible: root.tracer }
}





The jump property states the change in groups shall be immediately and not after a certain duration.


Nota

In the Qt 5 alpha release we could the duration for the group change not get working. Any ideas?



As the group of the rocket now changes to our ‘explosion’ particle group when the rocket particle enters the group goal area we need to add the firework inside the particle group:

// inside particle group
TrailEmitter {
    id: explosionEmitter
    anchors.fill: parent
    group: 'sparkle'
    follow: 'rocket'
    lifeSpan: 750
    emitRatePerParticle: 200
    size: 32
    velocity: AngleDirection { angle: -90; angleVariation: 180; magnitude: 50 }
}





The explosion emits particles into the ‘sparkle’ group. We will define soon a particle painter for this group. The trail emitter used follows the rocket particle and emits per rocket 200 particles. The particles are directed upwards and vary by 180 degree.

As the particles are emitted into the ‘sparkle’ group, we also need to define a particle painter for the particles:

ImageParticle {
    id: sparklePainter
    system: particleSystem
    groups: ['sparkle']
    color: 'red'
    colorVariation: 0.6
    source: "assets/star.png"
    alpha: 0.3
}





The sparkles of our firework shall be little red stars with a almost transparent color to allow some shine effects.

To make the firework more spectacular we also add a second trail emitter to our particle group, which will emit particles in a narrow cone downwards:

// inside particle group
TrailEmitter {
    id: explosion2Emitter
    anchors.fill: parent
    group: 'sparkle'
    follow: 'rocket'
    lifeSpan: 250
    emitRatePerParticle: 100
    size: 32
    velocity: AngleDirection { angle: 90; angleVariation: 15; magnitude: 400 }
}





Otherwise the setup is similar to the other explosion trail emitter. That’s it.

Here is the final result.


[image: ../../_images/firework_final.png]


Here is the full source code of the rocket firework.

import QtQuick 2.5
import QtQuick.Particles 2.0

Rectangle {
    id: root
    width: 480; height: 240
    color: "#1F1F1F"
    property bool tracer: false

    ParticleSystem {
        id: particleSystem
    }

    ImageParticle {
        id: smokePainter
        system: particleSystem
        groups: ['smoke']
        source: "assets/particle.png"
        alpha: 0.3
    }

    ImageParticle {
        id: rocketPainter
        system: particleSystem
        groups: ['rocket']
        source: "assets/rocket.png"
        entryEffect: ImageParticle.Fade
    }

    Emitter {
        id: rocketEmitter
        anchors.bottom: parent.bottom
        width: parent.width; height: 40
        system: particleSystem
        group: 'rocket'
        emitRate: 2
        maximumEmitted: 8
        lifeSpan: 4800
        lifeSpanVariation: 400
        size: 128
        velocity: AngleDirection { angle: 270; magnitude: 150; magnitudeVariation: 10 }
        acceleration: AngleDirection { angle: 90; magnitude: 50 }
        Tracer { color: 'red'; visible: root.tracer }
    }

    TrailEmitter {
        id: smokeEmitter
        system: particleSystem
        group: 'smoke'
        follow: 'rocket'
        size: 16
        sizeVariation: 8
        emitRatePerParticle: 16
        velocity: AngleDirection { angle: 90; magnitude: 100; angleVariation: 15 }
        lifeSpan: 200
        Tracer { color: 'blue'; visible: root.tracer }
    }

    Friction {
        groups: ['rocket']
        anchors.top: parent.top
        width: parent.width; height: 80
        system: particleSystem
        threshold: 5
        factor: 0.9

    }

    Turbulence {
        groups: ['rocket']
        anchors.bottom: parent.bottom
        width: parent.width; height: 160
        system: particleSystem
        strength:25
        Tracer { color: 'green'; visible: root.tracer }
    }


    ImageParticle {
        id: sparklePainter
        system: particleSystem
        groups: ['sparkle']
        color: 'red'
        colorVariation: 0.6
        source: "assets/star.png"
        alpha: 0.3
    }

    GroupGoal {
        id: rocketChanger
        anchors.top: parent.top
        width: parent.width; height: 80
        system: particleSystem
        groups: ['rocket']
        goalState: 'explosion'
        jump: true
        Tracer { color: 'blue'; visible: root.tracer }
    }

    ParticleGroup {
        name: 'explosion'
        system: particleSystem

        TrailEmitter {
            id: explosionEmitter
            anchors.fill: parent
            group: 'sparkle'
            follow: 'rocket'
            lifeSpan: 750
            emitRatePerParticle: 200
            size: 32
            velocity: AngleDirection { angle: -90; angleVariation: 180; magnitude: 50 }
        }

        TrailEmitter {
            id: explosion2Emitter
            anchors.fill: parent
            group: 'sparkle'
            follow: 'rocket'
            lifeSpan: 250
            emitRatePerParticle: 100
            size: 32
            velocity: AngleDirection { angle: 90; angleVariation: 15; magnitude: 400 }
        }
    }
}








Summary

Particles are a very powerful and fun way to express graphical phenomena like smoke. firework, random visual elements. The extended API in Qt 5 is very powerful and we have just scratched on the surface. There are several elements we haven’t yet played with like sprites, size tables or color tables. Also when the particles look very playful they have a great potential when used wisely to create some eye catcher in any user interface. Using to many particle effects inside an user interface will definitely lead to the impression towards a game. Creating games is also the real strength of the particles.
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Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.




Objective


	http://doc.qt.io/qt-5/qml-qtquick-shadereffect.html

	http://www.opengl.org/registry/doc/GLSLangSpec.4.20.6.clean.pdf

	http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

	http://www.lighthouse3d.com/opengl/glsl/

	http://wiki.delphigl.com/index.php/Tutorial_glsl

	Qt5Doc qtquick-shaders [http://doc.qt.io/qt-5//qtquick-shaders.html]



Give a short introduction to shader effects and then present the shader effects and their use.



Shaders allows us to create awesome rendering effects on top to the SceneGraph API leveraging directly the power of OpenGL running on the GPU. Shaders are implemented using the ShaderEffect and ShaderEffectSource elements. The shader algorithm itself is implemented using the OpenGL Shading Language.

Practically it means you mix QML code with shader code. On execution will the shader code be sent over to the GPU and compiled and executed on the GPU. The shader QML elements allow you to interact through properties with the OpenGL shader implementation.

Let’s first have a look what OpenGL shaders are.


OpenGL Shaders

OpenGL uses a rendering pipeline split into stages. A simplified OpenGL pipeline would contain a vertex and fragment shader.


[image: ../../_images/openglpipeline.png]


The vertex shader receives vertex data and must assign it to the gl_Position at the end of the routine. In the next stage the vertexes are clipped, transformed and rasterized for pixel output. From there the fragments (pixels) arrive in the fragment shader and can further be manipulated and the resulting color needs to be assigned to gl_FragColor. The vertex shader is called for each corner point of your polygon (vertex = point in 3D) and is responsible of any 3D manipulation of these points. The fragment (fragment = pixel) shader is called for each pixel and determines the color of that pixel.




Shader Elements

For programing shaders Qt Quick provides two elements. The ShaderEffectSource and the ShaderEffect. The shader effect applies custom shaders and the shader effect source renders a QML item into a texture and renders it. As shader effect can apply a custom shaders to it’s rectangular shape and can use sources for the shader operation. A source can be an image, which is used as a texture or a shader effect source.

The default shader uses the source and renders it unmodified.

import QtQuick 2.5

Rectangle {
    width: 480; height: 240
    color: '#1e1e1e'

    Row {
        anchors.centerIn: parent
        spacing: 20
        Image {
            id: sourceImage
            width: 80; height: width
            source: 'assets/tulips.jpg'
        }
        ShaderEffect {
            id: effect
            width: 80; height: width
            property variant source: sourceImage
        }
        ShaderEffect {
            id: effect2
            width: 80; height: width
            // the source where the effect shall be applied to
            property variant source: sourceImage
            // default vertex shader code
            vertexShader: "
                uniform highp mat4 qt_Matrix;
                attribute highp vec4 qt_Vertex;
                attribute highp vec2 qt_MultiTexCoord0;
                varying highp vec2 qt_TexCoord0;
                void main() {
                    qt_TexCoord0 = qt_MultiTexCoord0;
                    gl_Position = qt_Matrix * qt_Vertex;
                }"
            // default fragment shader code
            fragmentShader: "
                varying highp vec2 qt_TexCoord0;
                uniform sampler2D source;
                uniform lowp float qt_Opacity;
                void main() {
                    gl_FragColor = texture2D(source, qt_TexCoord0) * qt_Opacity;
                }"
        }
    }
}






[image: ../../_images/defaultshader.png]


In the above example we have a row of 3 images. The first is the real image. The second is rendered using the default shader and the third is rendered using the default shader code for the fragment and vertex extracted from the Qt 5 source code.


Nota

If you don’t want to see the source image and only the effected image you can set the Image to invisible (visible : false). The shader effects will still use the image data just the Image element will not be rendered.



Let’s have a closer look at the shader code.

vertexShader: "
    uniform highp mat4 qt_Matrix;
    attribute highp vec4 qt_Vertex;
    attribute highp vec2 qt_MultiTexCoord0;
    varying highp vec2 qt_TexCoord0;
    void main() {
        qt_TexCoord0 = qt_MultiTexCoord0;
        gl_Position = qt_Matrix * qt_Vertex;
    }"





Both shaders are from the Qt side a string bound to the vertexShader and fragmentShader property. Every shader code has to have a main() { ... } function, which is executed by the GPU. Variable starting with qt_ are provided by default by Qt already.

Here a short rundown on the variables:







	uniform
	value does not change during processing


	attribute
	linkage to external data


	varying
	shared value between shaders


	highp
	high precision value


	lowp
	low precision value


	mat4
	4x4 float matrix


	vec2
	2=dim float vector


	sampler2D
	2D texture


	float
	floating scalar





A better reference is the OpenGL ES 2.0 API Quick Reference Card [http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf]

Now we might be better able to understand what the variable are:


	qt_Matrix: model-view-projection matrix

	qt_Vertex: current vertex position

	qt_MultiTexCoord0: texture coordinate

	qt_TexCoord0: shared texture coordinate



So we have available the projection matrix, the current vertex and the texture coordinate. The texture coordinate relates to the texture given as source. In the main() function we store the texture coordinate for later use in the fragment shader. Every vertex shader need to assign the gl_Position this is done using here by multiplying the project matrix with the vertex, our point in 3D.

The fragment shader receives our texture coordinate from the vertex shader and also the texture from our QML source property. It shall be noted how easy it is to pass variable between the shader code and QML. Beautiful. Additional we have the opacity of the shader effect available as qt_Opacity. Every fragment shader needs to assign the gl_FragColor variable, this is done in the default shader code by picking the pixel from the source texture and multiplying it with the opacity.

fragmentShader: "
    varying highp vec2 qt_TexCoord0;
    uniform sampler2D source;
    uniform lowp float qt_Opacity;
    void main() {
        gl_FragColor = texture2D(source, qt_TexCoord0) * qt_Opacity;
    }"





During the next examples we will playing around with some simple shader mechanics. First we concentrate on the fragment shader and then we will come back to the vertex shader.




Fragment Shaders

The fragment shader is called for every pixel to be rendered. We will develop a small red lens, which will increase the red color channel value of the image.

Setting up the scene

First we setup our scene, with a grid centered in the field and our source image be displayed.

import QtQuick 2.5

Rectangle {
    width: 480; height: 240
    color: '#1e1e1e'

    Grid {
        anchors.centerIn: parent
        spacing: 20
        rows: 2; columns: 4
        Image {
            id: sourceImage
            width: 80; height: width
            source: 'assets/tulips.jpg'
        }
    }
}






[image: ../../_images/redlense1.png]


A red shader

Next we will add a shader, which displays a red rectangle by providing for each fragment a red color value.

            fragmentShader: "
                uniform lowp float qt_Opacity;
                void main() {
                    gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0) * qt_Opacity;
                }"





In the fragment shader we simply assign a vec4(1.0, 0.0, 0.0, 1.0) which represents a red color with full opacity (alpha=1.0) to the gl_FragColor for each fragment.


[image: ../../_images/redlense2.png]


A red shader with texture

Now we want to apply the red color to each texture pixel. For this we need the texture back in the vertex shader. As we don’t do anything else in the vertex shader the default vertex shader is enough for us.

        ShaderEffect {
            id: effect2
            width: 80; height: width
            property variant source: sourceImage
            visible: root.step>1
            fragmentShader: "
                varying highp vec2 qt_TexCoord0;
                uniform sampler2D source;
                uniform lowp float qt_Opacity;
                void main() {
                    gl_FragColor = texture2D(source, qt_TexCoord0) * vec4(1.0, 0.0, 0.0, 1.0) * qt_Opacity;
                }"
        }





The full shader contains now back our image source as variant property and we have left out the vertex shader, which if not specified is the default vertex shader.

In the fragment shader we pick the texture fragment texture2D(source, qt_TexCoord0) and apply the red color to it.


[image: ../../_images/redlense3.png]


The red channel property

It’s not really nice to hard code the red channel value, so we would like to control the value from the QML side. For this we add a redChannel property to our shader effect and also declare a uniform lowp float redChannel inside our fragment shader. That’s all to make a value from the shader code available to the QML side. Very simple.

        ShaderEffect {
            id: effect3
            width: 80; height: width
            property variant source: sourceImage
            property real redChannel: 0.3
            visible: root.step>2
            fragmentShader: "
                varying highp vec2 qt_TexCoord0;
                uniform sampler2D source;
                uniform lowp float qt_Opacity;
                uniform lowp float redChannel;
                void main() {
                    gl_FragColor = texture2D(source, qt_TexCoord0) * vec4(redChannel, 1.0, 1.0, 1.0) * qt_Opacity;
                }"
        }





To make the lens really a lens, we change the vec4 color to be vec4(redChannel, 1.0, 1.0, 1.0) so that the other colors are multiplied by 1.0 and only the red portion is multiplied by our redChannel variable.


[image: ../../_images/redlense4.png]


The red channel animated

As the redChannel property is just a normal property it can also be animated as all properties in QML. So we can use QML properties to animate values on the GPU to influence our shaders. How cool is that!

        ShaderEffect {
            id: effect4
            width: 80; height: width
            property variant source: sourceImage
            property real redChannel: 0.3
            visible: root.step>3
            NumberAnimation on redChannel {
                from: 0.0; to: 1.0; loops: Animation.Infinite; duration: 4000
            }

            fragmentShader: "
                varying highp vec2 qt_TexCoord0;
                uniform sampler2D source;
                uniform lowp float qt_Opacity;
                uniform lowp float redChannel;
                void main() {
                    gl_FragColor = texture2D(source, qt_TexCoord0) * vec4(redChannel, 1.0, 1.0, 1.0) * qt_Opacity;
                }"
        }





Here the final result.


[image: ../../_images/redlense5.png]


The shader effect on the 2nd row is animated from 0.0 to 1.0 with a duration of 4 seconds. So the image goes from no red information (0.0 red) over to a normal image (1.0 red).




Wave Effect

In this more complex example we will create a wave effect with the fragment shader. The wave form is based on the sinus curve and it influences the texture coordinates used for the color.

import QtQuick 2.5

Rectangle {
    width: 480; height: 240
    color: '#1e1e1e'

    Row {
        anchors.centerIn: parent
        spacing: 20
        Image {
            id: sourceImage
            width: 160; height: width
            source: "assets/coastline.jpg"
        }
        ShaderEffect {
            width: 160; height: width
            property variant source: sourceImage
            property real frequency: 8
            property real amplitude: 0.1
            property real time: 0.0
            NumberAnimation on time {
                from: 0; to: Math.PI*2; duration: 1000; loops: Animation.Infinite
            }

            fragmentShader: "
                varying highp vec2 qt_TexCoord0;
                uniform sampler2D source;
                uniform lowp float qt_Opacity;
                uniform highp float frequency;
                uniform highp float amplitude;
                uniform highp float time;
                void main() {
                    highp vec2 pulse = sin(time - frequency * qt_TexCoord0);
                    highp vec2 coord = qt_TexCoord0 + amplitude * vec2(pulse.x, -pulse.x);
                    gl_FragColor = texture2D(source, coord) * qt_Opacity;
                }"
        }
    }
}





The wave calculation is based on a pulse and the texture coordinate manipulation. The pulse equation gives us a sine wave depending on the current time and the used texture coordinate:

highp vec2 pulse = sin(time - frequency * qt_TexCoord0);





Without the time factor we would just have a distortion but not a traveling distortion, like waves are.

For the color we use the color at a different texture coordinate:

highp vec2 coord = qt_TexCoord0 + amplitude * vec2(pulse.x, -pulse.x);





The texture coordinate is influences by our pulse x-value. The result of this is a moving wave.


[image: ../../_images/wave.png]


Also if we haven’t moved pixels in this fragment shader the effect would look at first like a job for a vertex shader.




Vertex Shader

The vertex shader can be used to manipulated the vertexes provided by the shader effect. In normal cases the shader effect has 4 vertexes (top-left, top-right, bottom-left and bottom-right). Each vertex reported is from type vec4. To visualize the vertex shader we will program a genie effect. This effect is often used to let a rectangular window area vanish into one point.


[image: ../../_images/genieeffect.png]


Setting up the scene

First we will setup our scene again.

import QtQuick 2.5

Rectangle {
    width: 480; height: 240
    color: '#1e1e1e'

    Image {
        id: sourceImage
        width: 160; height: width
        source: "assets/lighthouse.jpg"
        visible: false
    }
    Rectangle {
        width: 160; height: width
        anchors.centerIn: parent
        color: '#333333'
    }
    ShaderEffect {
        id: genieEffect
        width: 160; height: width
        anchors.centerIn: parent
        property variant source: sourceImage
        property bool minimized: false
        MouseArea {
            anchors.fill: parent
            onClicked: genieEffect.minimized = !genieEffect.minimized
        }
    }
}





This provides as a scene with a dark background and a shader effect using an image as the source texture. The original image is not visible on the image produced by our genie effect. Additional we added a dark rectangle on the same geometry as the shader effect so we can better detect where we need to click to revert the effect.


[image: ../../_images/geniescene.png]


The effect is triggered by clicking on the image, this is defined by the mouse area covering the effect. In the onClicked handler we toggle the custom boolean property minimized. We will use this property later to toggle the effect.

Minimize and normalize

After we have setup the scene, we define a property of type real called minimize, the property will contain the current value of our minimization. The value will vary from 0.0 to 1.0 and is controlled by a sequential animation.

        property real minimize: 0.0

        SequentialAnimation on minimize {
            id: animMinimize
            running: genieEffect.minimized
            PauseAnimation { duration: 300 }
            NumberAnimation { to: 1; duration: 700; easing.type: Easing.InOutSine }
            PauseAnimation { duration: 1000 }
        }

        SequentialAnimation on minimize {
            id: animNormalize
            running: !genieEffect.minimized
            NumberAnimation { to: 0; duration: 700; easing.type: Easing.InOutSine }
            PauseAnimation { duration: 1300 }
        }





The animation is triggered by the togling of the minimized property. Now that we have setup all our surroundings we finally can look at our vertex shader.

        vertexShader: "
            uniform highp mat4 qt_Matrix;
            attribute highp vec4 qt_Vertex;
            attribute highp vec2 qt_MultiTexCoord0;
            varying highp vec2 qt_TexCoord0;
            uniform highp float minimize;
            uniform highp float width;
            uniform highp float height;
            void main() {
                qt_TexCoord0 = qt_MultiTexCoord0;
                highp vec4 pos = qt_Vertex;
                pos.y = mix(qt_Vertex.y, height, minimize);
                pos.x = mix(qt_Vertex.x, width, minimize);
                gl_Position = qt_Matrix * pos;
            }"





The vertex shader is called for each vertex so four times, in our case. The default qt defined parameters are provided, like qt_Matrix, qt_Vertex, qt_MultiTexCoord0, qt_TexCoord0. We have discussed the variable already earlier. Additional we link the minimize, width and height variables from our shader effect into our vertex shader code. In the main function we store the current texture coordinate in our qt_TexCoord0 to make it available to the fragment shader. Now we copy the current position and modify the x and y position of the vertex:

highp vec4 pos = qt_Vertex;
pos.y = mix(qt_Vertex.y, height, minimize);
pos.x = mix(qt_Vertex.x, width, minimize);





The mix(...) function provides a linear interpolation between the first 2 parameters on the point (0.0-1.0) provided by the 3rd parameter. So in our case we interpolate for y between the current y position and the hight based on the current minimize value, similar for x. Bear in mind the minimize value is animated by our sequential animation and travels from 0.0 to 1.0 (or vice versa).


[image: ../../_images/genieminimize.png]


The resulting effect is not really the genie effect but is already a great step towards it.


Por fazer

better explanation, maybe draw the 4 vertexes and their interpolation



Primitive Bending

So minimized the x and y components of our vertexes. Now we would like to slightly modify the x manipulation and make it depending of the current y value. The needed changes are pretty small. The y-position is calculated as before. The interpolation of the x-position depends now on the vertexes y-position:

highp float t = pos.y / height;
pos.x = mix(qt_Vertex.x, width, t * minimize);





This results into an x-position tending towards the width when the y-position is larger. In other words the upper 2 vertexes are not affect ed at all as they have an y-position of 0 and the lower two vertexes x-positions both bend towards the width, so they bend towards the same x-position.


[image: ../../_images/geniebending.png]


import QtQuick 2.5

Rectangle {
    width: 480; height: 240
    color: '#1e1e1e'

    Image {
        id: sourceImage
        width: 160; height: width
        source: "assets/lighthouse.jpg"
        visible: false
    }
    Rectangle {
        width: 160; height: width
        anchors.centerIn: parent
        color: '#333333'
    }
    ShaderEffect {
        id: genieEffect
        width: 160; height: width
        anchors.centerIn: parent
        property variant source: sourceImage
        property real minimize: 0.0
        property bool minimized: false


        SequentialAnimation on minimize {
            id: animMinimize
            running: genieEffect.minimized
            PauseAnimation { duration: 300 }
            NumberAnimation { to: 1; duration: 700; easing.type: Easing.InOutSine }
            PauseAnimation { duration: 1000 }
        }

        SequentialAnimation on minimize {
            id: animNormalize
            running: !genieEffect.minimized
            NumberAnimation { to: 0; duration: 700; easing.type: Easing.InOutSine }
            PauseAnimation { duration: 1300 }
        }


        vertexShader: "
            uniform highp mat4 qt_Matrix;
            uniform highp float minimize;
            uniform highp float height;
            uniform highp float width;
            attribute highp vec4 qt_Vertex;
            attribute highp vec2 qt_MultiTexCoord0;
            varying highp vec2 qt_TexCoord0;
            void main() {
                qt_TexCoord0 = qt_MultiTexCoord0;
                // M1>>
                highp vec4 pos = qt_Vertex;
                pos.y = mix(qt_Vertex.y, height, minimize);
                highp float t = pos.y / height;
                pos.x = mix(qt_Vertex.x, width, t * minimize);
                gl_Position = qt_Matrix * pos;





Better Bending

As the bending is not really satisfying currently we will add several parts to improve the situation.
First we enhance our animation to support an own bending property. This is necessary as the bending should happen immediately and the y-minimization should be delayed shortly. Both animation have in the sum the same duration (300+700+1000 and 700+1300).

        property real bend: 0.0
        property bool minimized: false


        // change to parallel animation
        ParallelAnimation {
            id: animMinimize
            running: genieEffect.minimized
            SequentialAnimation {
                PauseAnimation { duration: 300 }
                NumberAnimation {
                    target: genieEffect; property: 'minimize';
                    to: 1; duration: 700;
                    easing.type: Easing.InOutSine
                }
                PauseAnimation { duration: 1000 }
            }
            // adding bend animation
            SequentialAnimation {
                NumberAnimation {
                    target: genieEffect; property: 'bend'
                    to: 1; duration: 700;
                    easing.type: Easing.InOutSine }
                PauseAnimation { duration: 1300 }
            }
        }





Additional to make the bending a smooth curve the y-effect on the x-position is not modified by a curved function from 0..1 and the pos.x depends now on the new bend property animation:

highp float t = pos.y / height;
t = (3.0 - 2.0 * t) * t * t;
pos.x = mix(qt_Vertex.x, width, t * bend);





The curve starts smooth at the 0.0 value, grows then and stops smoothly towards the 1.0 value. Here is a plot of the function in the specified range. For us only the range from 0..1 is from interest.


[image: ../../_images/curve.png]


The most visual change is by increasing our amount of vertex points. The vertex points used can be increased by using a mesh:

mesh: GridMesh { resolution: Qt.size(16, 16) }





The shader effect now has an equality distributed grid of 16x16 vertexes instead of the 2x2 vertexes used before. This makes the interpolation between the vertexes look much smoother.


[image: ../../_images/geniesmoothbending.png]


You can see also the influence of the curve being used, as the bending smoothes at the end nicely. This is where the bending has the strongest effect.

Choosing Sides

As a final enhancement we want to be able to switch sides. The side is towards which point the genie effect vanishes. Till now it vanishes always towards the width. By adding a side property we are able to modify the point between 0 and width.

ShaderEffect {
    ...
    property real side: 0.5

    vertexShader: "
        ...
        uniform highp float side;
        ...
        pos.x = mix(qt_Vertex.x, side * width, t * bend);
    "
}






[image: ../../_images/geniehalfside.png]


Packaging

The last thing to-do is package our effect nicely. For this we extract our genie effect code into an own component called GenieEffect. It has the shader effect as the root element. We removed the mouse area as this should not be inside the component as the triggering of the effect can be toggled by the minimized property.

import QtQuick 2.5

ShaderEffect {
    id: genieEffect
    width: 160; height: width
    anchors.centerIn: parent
    property variant source
    mesh: GridMesh { resolution: Qt.size(10, 10) }
    property real minimize: 0.0
    property real bend: 0.0
    property bool minimized: false
    property real side: 1.0


    ParallelAnimation {
        id: animMinimize
        running: genieEffect.minimized
        SequentialAnimation {
            PauseAnimation { duration: 300 }
            NumberAnimation {
                target: genieEffect; property: 'minimize';
                to: 1; duration: 700;
                easing.type: Easing.InOutSine
            }
            PauseAnimation { duration: 1000 }
        }
        SequentialAnimation {
            NumberAnimation {
                target: genieEffect; property: 'bend'
                to: 1; duration: 700;
                easing.type: Easing.InOutSine }
            PauseAnimation { duration: 1300 }
        }
    }

    ParallelAnimation {
        id: animNormalize
        running: !genieEffect.minimized
        SequentialAnimation {
            NumberAnimation {
                target: genieEffect; property: 'minimize';
                to: 0; duration: 700;
                easing.type: Easing.InOutSine
            }
            PauseAnimation { duration: 1300 }
        }
        SequentialAnimation {
            PauseAnimation { duration: 300 }
            NumberAnimation {
                target: genieEffect; property: 'bend'
                to: 0; duration: 700;
                easing.type: Easing.InOutSine }
            PauseAnimation { duration: 1000 }
        }
    }

    vertexShader: "
        uniform highp mat4 qt_Matrix;
        attribute highp vec4 qt_Vertex;
        attribute highp vec2 qt_MultiTexCoord0;
        uniform highp float height;
        uniform highp float width;
        uniform highp float minimize;
        uniform highp float bend;
        uniform highp float side;
        varying highp vec2 qt_TexCoord0;
        void main() {
            qt_TexCoord0 = qt_MultiTexCoord0;
            highp vec4 pos = qt_Vertex;
            pos.y = mix(qt_Vertex.y, height, minimize);
            highp float t = pos.y / height;
            t = (3.0 - 2.0 * t) * t * t;
            pos.x = mix(qt_Vertex.x, side * width, t * bend);
            gl_Position = qt_Matrix * pos;
        }"
}





You can use now the effect simply like this:

import QtQuick 2.5

Rectangle {
    width: 480; height: 240
    color: '#1e1e1e'

    GenieEffect {
        source: Image { source: 'assets/lighthouse.jpg' }
        MouseArea {
            anchors.fill: parent
            onClicked: parent.minimized = !parent.minimized
        }
    }
}





We have simplified the code by removing our background rectangle and we assigned the image directly to the effect, instead of loading it inside a standalone image element.




Curtain Effect

In the last example for custom shader effects I would like to bring you the curtain effect. This effect was published first in May 2011 as part of Qt labs for shader effects [http://labs.qt.nokia.com/2011/05/03/qml-shadereffectitem-on-qgraphicsview/].


[image: ../../_images/curtain.png]


At that time I really loved these effects and the curtain effect was my favorite out of them. I just love how the curtain opens and hide the background object.

I took the code and adapted it towards Qt 5, which was straightforward. Also O did some simplifications to be able to use it better for a showcase. So if you are interested in the full example, please visit the labs blog.

Just a little bot for the background, the curtain is actually an image called fabric.jpg and it is the source for a shader effect. The effect uses the vertex shader to swing the curtain and uses the fragment shader to provide some shades. Here is a simple diagram to make you hopefully better understand the code.


[image: ../../_images/curtain_diagram.png]


The waved shades of the curtain are computed through a sin curve with 7 up/downs (7*PI=21.99...) on the width of the curtain. The other important part is the swing. The topWidth of the curtain is animated when the curtain is opened or closed. The bottomWidth follows the topWidth with a SpringAnimation. By this we create the effect of the swinging bottom part of the curtain. The calculated swing provides the strength of this swing interpolated over the y-component of the vertexes.

The curtain effect is located in the CurtainEffect.qml component where the fabric image act as the texture source. There is nothing new on the use of shaders here, only a different way to manipulate the gl_Position in the vertex shader and the gl_FragColor in the fragment shader.

import QtQuick 2.5

ShaderEffect {
    anchors.fill: parent

    mesh: GridMesh {
        resolution: Qt.size(50, 50)
    }

    property real topWidth: open?width:20
    property real bottomWidth: topWidth
    property real amplitude: 0.1
    property bool open: false
    property variant source: effectSource

    Behavior on bottomWidth {
        SpringAnimation {
            easing.type: Easing.OutElastic;
            velocity: 250; mass: 1.5;
            spring: 0.5; damping: 0.05
        }
    }

    Behavior on topWidth {
        NumberAnimation { duration: 1000 }
    }


    ShaderEffectSource {
        id: effectSource
        sourceItem: effectImage;
        hideSource: true
    }

    Image {
        id: effectImage
        anchors.fill: parent
        source: "assets/fabric.png"
        fillMode: Image.Tile
    }

    vertexShader: "
        attribute highp vec4 qt_Vertex;
        attribute highp vec2 qt_MultiTexCoord0;
        uniform highp mat4 qt_Matrix;
        varying highp vec2 qt_TexCoord0;
        varying lowp float shade;

        uniform highp float topWidth;
        uniform highp float bottomWidth;
        uniform highp float width;
        uniform highp float height;
        uniform highp float amplitude;

        void main() {
            qt_TexCoord0 = qt_MultiTexCoord0;

            highp vec4 shift = vec4(0.0, 0.0, 0.0, 0.0);
            highp float swing = (topWidth - bottomWidth) * (qt_Vertex.y / height);
            shift.x = qt_Vertex.x * (width - topWidth + swing) / width;

            shade = sin(21.9911486 * qt_Vertex.x / width);
            shift.y = amplitude * (width - topWidth + swing) * shade;

            gl_Position = qt_Matrix * (qt_Vertex - shift);

            shade = 0.2 * (2.0 - shade ) * ((width - topWidth + swing) / width);
        }"

    fragmentShader: "
        uniform sampler2D source;
        varying highp vec2 qt_TexCoord0;
        varying lowp float shade;
        void main() {
            highp vec4 color = texture2D(source, qt_TexCoord0);
            color.rgb *= 1.0 - shade;
            gl_FragColor = color;
        }"
}





The effect is used in the curtaindemo.qml file.

import QtQuick 2.5

Item {
    id: root
    width: background.width; height: background.height


    Image {
        id: background
        anchors.centerIn: parent
        source: 'assets/background.png'
    }

    Text {
        anchors.centerIn: parent
        font.pixelSize: 48
        color: '#efefef'
        text: 'Qt5 Cadaques'
    }

    CurtainEffect {
        id: curtain
        anchors.fill: parent
    }

    MouseArea {
        anchors.fill: parent
        onClicked: curtain.open = !curtain.open
    }
}





The curtain is opened through a custom open property on the curtain effect. We use a MouseArea to trigger the opening and closing of the curtain.




Qt GraphicsEffect Library

The graphics effect library is a collection of shader effects. Ready made by the Qt developers. It’s a great tool-set to be used in your application but also a great source to learn how to build shaders.

The graphics effects library comes with a so called manual testbed which is a great tool to interactively discover the different effects.

The testbed is located under $QTDIR/qtgraphicaleffects/tests/manual/testbed.


[image: ../../_images/graphicseffectstestbed.png]


The effects library contains ca 20 effects. A list of the effect and a short description can be found below.

Graphics Effects List


Graphics Effects List
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Multimedia

Autor da secção: e8johan [https://bitbucket.org/e8johan]


Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



The multimedia elements in the QtMultimedia makes it possible to playback and record media such as sound, video or pictures. Decoding and encoding is handled through platform specific backends. For instance, the popular gstreamer framework is used on Linux, while DirectShow is used on Windows and QuickTime on OS X.

The multimedia elements are not a part of the Qt Quick core API. Instead, they are provided through a separate API made available by importing QtMultimedia 5.6 as shown below:

import QtMultimedia 5.6






Playing Media

The most basic case of multimedia integration in a QML application is for it to playback media. This is done using the MediaPlayer element, optionally in combination with a VideoOutput element if the source is an image or video. The MediaPlayer element has a source property pointing at the media to play. When a media source has been bound, it is simply a matter of calling the play function to start playing.

If you want to play visual media, i.e. pictures or video, you must also setup a VideoOutput element. The MediaPlayer running the playback is bound to the video output through the source property.

In the example shown below, the MediaPlayer is given a file with video contents as source. A VideoOutput is created and bound to the media player. As soon as the main component has been fully initialized, i.e. at Component.onCompleted, the player’s play function is called.

import QtQuick 2.5
import QtMultimedia 5.6

Item {
    width: 1024
    height: 600

    MediaPlayer {
        id: player
        source: "trailer_400p.ogg"
    }

    VideoOutput {
        anchors.fill: parent
        source: player
    }

    Component.onCompleted: {
        player.play();
    }
}
// M1>>





Basic operations such as altering the volume when playing media is controlled through the volume property of the MediaPlayer element. There are other useful properties as well. For instance, the duration and position properties can be used to build a progress bar. If the seekable property is true, it is even possible to update the position when the progress bar is tapped. The example below shows how this is added to the basic playback example above.

    Rectangle {
        id: progressBar

        anchors.left: parent.left
        anchors.right: parent.right
        anchors.bottom: parent.bottom
        anchors.margins: 100

        height: 30

        color: "lightGray"

        Rectangle {
            anchors.left: parent.left
            anchors.top: parent.top
            anchors.bottom: parent.bottom

            width: player.duration>0?parent.width*player.position/player.duration:0

            color: "darkGray"
        }

        MouseArea {
            anchors.fill: parent

            onClicked: {
                if (player.seekable) {
                    player.position = player.duration * mouse.x/width;
                }
            }
        }
    }





The position property is only updated once per second in the default case. This means that the progress bar will update in large steps unless the duration of the media is long enough, compared to the number pixels that the progress bar is wide. This can, however, be changed through accessing the mediaObject property and its notifyInterval property. It can be set to the number of milliseconds between each position update, increasing the smoothness of the user interface.

    Connections {
        target: player
        onMediaObjectChanged: {
            if (player.mediaObject) {
                player.mediaObject.notifyInterval = 50;
            }
        }
    }






Por fazer

The code above does not have any effect on the update interval! There seems to be no media object...



When using MediaPlayer to build a media player, it is good to monitor the status property of the player. It is an enumeration of the possible statuses, ranging from MediaPlayer.Buffered``to ``MediaPlayer.InvalidMedia. The possible values are summarized in the bullets below:


	MediaPlayer.UnknownStatus. The status is unknown.

	MediaPlayer.NoMedia. The player has no media source assigned. Playback is stopped.

	MediaPlayer.Loading. The player is loading the media.

	MediaPlayer.Loaded. The media has been loaded. Playback is stopped.

	MediaPlayer.Stalled. The loading of media has stalled.

	MediaPlayer.Buffering. The media is being buffered.

	MediaPlayer.Buffered. The media has been buffered, this means that the player can start playing the media.

	MediaPlayer.EndOfMedia. The end of the media has been reached. Playback is stopped.

	MediaPlayer.InvalidMedia. The media cannot be played. Playback is stopped.



As mentioned in the bullets above, the playback state can vary over time. Calling play, pause or stop alters the state, but the media in question can also have effect. For example, the end can be reached, or it can be invalid, causing playback to stop. The current playback state can be tracked through the playbackState property. The values can be MediaPlayer.PlayingState, MediaPlayer.PausedState or MediaPlayer.StoppedState.

Using the autoPlay property, the MediaPlayer can be made to attempt go to the playing state as soon as a the source property is changed. A similar property is the autoLoad causing the player to try to load the media as soon as the source property is changed. The latter property is enabled by default.

It is also possible to let the MediaPlayer to loop a media item. The loops property controls how many times the source is to be played. Setting the property to MediaPlayer.Infinite causes endless looping. Great for continious animations or a looping background song.




Sound Effects

When playing sound effects, the response time from requesting playback until actually playing becomes important. In this situation, the SoundEffect element comes in handy. By setting up the source property, a simple call to the play function immediately starts playback.

This can be utilized for audio feedback when tapping the screen, as shown below.

    SoundEffect {
        id: beep
        source: "beep.wav"
    }

    Rectangle {
        id: button

        anchors.centerIn: parent

        width: 200
        height: 100

        color: "red"

        MouseArea {
            anchors.fill: parent
            onClicked: beep.play()
        }
    }





The element can also be utilized to accompany a transition with audio. To trigger playback from a transition, the ScriptAction element is used.

    SoundEffect {
        id: swosh
        source: "swosh.wav"
    }

    transitions: [
        Transition {
            ParallelAnimation {
                ScriptAction { script: swosh.play(); }
                PropertyAnimation { properties: "rotation"; duration: 200; }
            }
        }
    ]





In addition to the play function, a number of properties similar to the ones offered by MediaPlayer are available. Examples are volume and loops. The latter can be set to SoundEffect.Infinite for infinite playback. To stop playback, call the stop function.


Nota

When the PulseAudio backend is used, stop will not stop instantaneously, but only prevent further loops. This is due to limitations in the underlying API.






Video Streams

The VideoOutput element is not limited to usage in combination with MediaPlayer elements. It can also be used directly with video sources to show a live video stream. Using a Camera element as source and the application is complete. The video stream from a Camera can be used to provide a live stream to the user. This stream works as the search view when capturing photos.

import QtQuick 2.5
import QtMultimedia 5.6

Item {
    width: 1024
    height: 600

    VideoOutput {
        anchors.fill: parent
        source: camera
    }

    Camera {
        id: camera
    }
}








Capturing Images

One of the key features of the Camera element is that is can be used to take pictures. We will use this in a simple stop-motion application. In it, you will learn how to show a viewfinder, snap photos and to keep track of the pictures taken.

The user interface is shown below. It consists of three major parts. In the background, you will find the viewfinder, to the right, a column of buttons and at the bottom, a list of images taken. The idea is to take a series of photos, then click the Play Sequence button. This will play the images back, creating a simple stop-motion film.


[image: ../../_images/camera-ui.png]


The viewfinder part of the camera is simply a Camera element used as source in a VideoOutput. This will show the user a live videostream from the camera.

    VideoOutput {
        anchors.fill: parent
        source: camera
    }

    Camera {
        id: camera
    }





The list of photos is a ListView oriented horizontally shows images from a ListModel called imagePaths. In the background, a semi-transparent black Rectangle is used.

    ListModel {
        id: imagePaths
    }

    ListView {
        id: listView

        anchors.left: parent.left
        anchors.right: parent.right
        anchors.bottom: parent.bottom
        anchors.bottomMargin: 10

        height: 100

        orientation: ListView.Horizontal
        spacing: 10

        model: imagePaths

        delegate: Image {
            height: 100
            source: path
            fillMode: Image.PreserveAspectFit
        }

        Rectangle {
            anchors.fill: parent
            anchors.topMargin: -10

            color: "black"
            opacity: 0.5
        }
    }





For the shooting of images, you need to know that the Camera element contains a set of sub-elements for various tasks. To capture still pictures, the Camera.imageCapture element is used. When you call the capture method, a picture is taken. This results in the Camera.imageCapture emitting first the imageCaptured signal followed by the imageSaved signal.

        Button {
            id: shotButton

            text: "Take Photo"
            onClicked: {
                camera.imageCapture.capture();
            }
        }





To intercept the signals of a sub-element, a Connections element is needed. In this case, we don’t need to show a preview image, but simply add the resulting image to the ListView at the bottom of the screen. Shown in the example below, the path to the saved image is provided as the path argument with the signal.

    Connections {
        target: camera.imageCapture

        onImageSaved: {
            imagePaths.append({"path": path})
            listView.positionViewAtEnd();
        }
    }





For showing a preview, connect to the imageCaptured signal and use the preview signal argument as source of an Image element. A requestId signal argument  is sent along both the imageCaptured and imageSaved. This value is returned from the capture method. Using this, the capture of an image can be traced through the complete cycle. This way, the preview can be used first and then be replaced by the properly saved image. This, however, is nothing that we do in the example.

The last part of the application is the actual playback. This is driven using a Timer element and some JavaScript. The _imageIndex variable is used to keep track of the currently shown image. When the last image has been shown, the playback is stopped. In the example, the root.state is used to hide parts of the user interface when playing the sequence.

    property int _imageIndex: -1

    function startPlayback()
    {
        root.state = "playing";
        setImageIndex(0);
        playTimer.start();
    }

    function setImageIndex(i)
    {
        _imageIndex = i;

        if (_imageIndex >= 0 && _imageIndex < imagePaths.count)
            image.source = imagePaths.get(_imageIndex).path;
        else
            image.source = "";
    }

    Timer {
        id: playTimer

        interval: 200
        repeat: false

        onTriggered: {
            if (_imageIndex + 1 < imagePaths.count)
            {
                setImageIndex(_imageIndex + 1);
                playTimer.start();
            }
            else
            {
                setImageIndex(-1);
                root.state = "";
            }
        }
    }








Advanced Techniques


Por fazer

The Camera API of Qt 5 is really lacking in documentation right now. I would love to cover more advanced camera controls such as exposure and focusing, but there are no ranges or values, nor clear guides to how to use the APIs in the reference docs right now.




Implementing a Playlist

The Qt 5 multimedia API does not provide support for playlists. Luckly, it is easy to build one. The idea is to be able to set it up with a model of items and and a MediaPlayer element, as shown below. The Playlist element is resposible for setting the source of the MediaPlayer, while the playstate is controlled via the player.

    MediaPlayer {
        id: player
        playlist: Playlist {
            PlaylistItem { source: "trailer_400p.ogg" }
            PlaylistItem { source: "trailer_400p.ogg" }
            PlaylistItem { source: "trailer_400p.ogg" }
        }
    }





The first half of the Playlist element, shown below, takes care of setting the source element given an index in the setIndex function. It also implements the next and previous functions to navigate the list.

Item {
    id: root

    property int index: 0
    property MediaPlayer mediaPlayer
    property ListModel items: ListModel {}

    function setIndex(i) {
        console.log("setting index to: " + i);

        index = i;

        if (index < 0 || index >= items.count) {
            index = -1;
            mediaPlayer.source = "";
        } else {
            mediaPlayer.source = items.get(index).source;
        }
    }

    function next() {
        setIndex(index + 1);
    }

    function previous() {
        setIndex(index + 1);
    }





The trick to make the playlist continue to the next element at the end of each element is to monitor the status property of the MediaPlayer. As soon as the MediaPlayer.EndOfMedia state is reached, the index is increased and playback resumed, or, if the end of the list is reached, the playback is stopped.

    Connections {
        target: root.mediaPlayer

        onStopped: {
            if (root.mediaPlayer.status == MediaPlayer.EndOfMedia) {
                root.next();
                if (root.index == -1) {
                    root.mediaPlayer.stop();
                } else {
                    root.mediaPlayer.play();
                }
            }
        }
    }










Summary

The media API provided by Qt provides mechanisms for playing and capturing video and audio. Through the VideoOutput element and video source can be displayed in the user interface. Through the MediaPlayer element, most playback can be handled, even though the SoundEffect can be used for low-latency sounds. For capturing, or only showing a live video stream, the Camera element is used.
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Networking

Autor da secção: jryannel [https://github.com/jryannel]


Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



Qt 5 comes with a rich set of networking classes on the C++ side. There are for example high level classes on the http protocol layer in a request-reply fashion such as QNetworkRequest, QNetworkReply and QNetworkAccessManager. But also lower levels classes on the TCP/IP or UDP protocol layer such as QTcpSocket, QTcpServer and QUdpSocket. Additional classes exists to manage proxies, network cache and also the systems network configuration.

This chapter will not be about C++ networking, this chapter is about Qt Quick and networking. So how can I connect my QML/JS user interface directly with a network service or how can I serve my user interface via a network service. There are good books and references out there to cover network programming with Qt/C++. Then it is just a manner to read the chapter about C++ integration to come up with an integration layer to feed your data into the Qt Quick world.


Serving UI via HTTP

To load a simple user interface via HTTP we need to have a web-server, which serves the UI documents. We start of with our own simple web-server using a python one-liner. But first we need to have our demo user interface. For this we create a small main.qml file in our project folder and create a red rectangle inside.

// main.qml
import QtQuick 2.5

Rectangle {
    width: 320
    height: 320
    color: '#ff0000'
}





To serve this file we launch a small python script:

$ cd <PROJECT>
# python -m SimpleHTTPServer 8080





Now our file should be reachable via http://localhost:8080/main.qml. You can test it with:

$ curl http://localhost:8080/main.qml





Or just point your browser to the location. Your browser does not understand QML and will not be able to render the document through. We need to create now such a browser for QML documents. To render the document we need to point our qmlscene to the location. Unfortunately the qmlscene is limited to local files only. We could overcome this limitation by writing our own qmlscene replacement or simple dynamically load it using QML. We choose the dynamic loading as it works just fine. For this we use a loader element to retrieve for us the remote document.

// remote.qml
import QtQuick 2.5

Loader {
    id: root
    source: 'http://localhost:8080/main2.qml'
    onLoaded: {
        root.width = item.width
        root.height = item.height
    }
}





Now we can ask the qmlscene to load the local remote.qml loader document. There is one glitch still. The loader will resize to the size of the loaded item. And our qmlscene needs also to adapt to that size. This can be accomplished using the --resize-to-root option to the qmlscene:

$ qmlscene --resize-to-root remote.qml





Resize to root tells the qml scene to resize its window to the size of the root element. The remote is now loading the main.qml from our local server and resizes itself to the loaded user interface. Sweet and simple.


Nota

If you do not want to run a local server you can also use the gist service from GitHub. Gist is a clipboard like online service like PasteBin and others. It is available under https://gist.github.com . I created for this example a small gist under the url https://gist.github.com/jryannel/7983492 . This will reveal a green rectangle. As the gist url will provide the web-site as HTML code we need to attach a /raw to the url to retrieve the raw file and not the HTML code.

// remote.qml
import QtQuick 2.5

Loader {
    id: root
    source: 'https://gist.github.com/jryannel/7983492/raw'
    onLoaded: {
        root.width = item.width
        root.height = item.height
    }
}







To load another file over the network you just need to reference the component name. For example a Button.qml can be accessed as normal, as long it is in the same remote folder.


Por fazer

Is this true? What are the rules?




Networked Components

Let us create a small experiment. We add to our remote side a small button as a reusable component.

- src/main.qml
- src/Button.qml





We modify our main.qml to use the button and save it as main2.qml:

import QtQuick 2.5

Rectangle {
    width: 320
    height: 320
    color: '#ff0000'

    Button {
        anchors.centerIn: parent
        text: 'Click Me'
        onClicked: Qt.quit()
    }
}





And launch our web-server again:

$ cd src
# python -m SimpleHTTPServer 8080





And our remote loader loads the main QML via http again:

$ qmlscene --resize-to-root remote.qml





What we see is an error:

http://localhost:8080/main2.qml:11:5: Button is not a type





So QML can not resolve the button component when it is loaded remotely. If the code would be locally qmlscene src/main.qml this would be no issue. Locally Qt can parse the directory and detect which components are available but remotely there is no “list-dir” function for http. We can force QML to load the element using the import statement inside main.qml:

import "http://localhost:8080" as Remote

...

Remote.Button { ... }





This will work then when the qmlscene is run again:

$ qmlscene --resize-to-root remote.qml





Here the full code:

// main2.qml
import QtQuick 2.5
import "http://localhost:8080" 1.0 as Remote

Rectangle {
    width: 320
    height: 320
    color: '#ff0000'

    Remote.Button {
        anchors.centerIn: parent
        text: 'Click Me'
        onClicked: Qt.quit()
    }
}





A better option is to use the qmldir file on the server side to control the export.

// qmldir
Button 1.0 Button.qml





And then updating the main.qml:

import "http://localhost:8080" 1.0 as Remote

...

Remote.Button { ... }






Nota

Loading



When using components from a local file system, they are created immediately without a latency. When components are loaded via the network they are created asynchronously. This has the effect that the time of creation is unknown and an element may not yet be fully loaded when others are already completed. Take this into account when working with components loaded over the network.






Templating

When working with HTML projects they often use template driven development. A small HTML stub is expanded on the server side with code generated by the server using a template mechanism. For example for a photo list the list header would be coded in HTML and the dynamic image list would be dynamically generated using a template mechanism. In general this can also be done using QML but there are some issues with it.

First it is not necessary. The reason HTML developers are doing this is to overcome limitations on the HTML backend. There is no component model yet in HTML so dynamic aspects have to be covered using these mechanism or using programmatically javascript on the client side. Many JS frameworks are out there (jQuery, dojo, backbone, angular, ...) to solve this issue and put more logic into the client-side browser to connect with a network service. The client would then just use a web-service API (e.g. serving JSON or XML data) to communicate with the server. This seems also the better approach for QML.

The second issue is the component cache from QML. When QML accesses a component it caches the render-tree and just loads the cached version for rendering. A modified version on disk or remote would not be detected without restarting the client. To overcome this issue we could use a trick. We could use URL fragments to load the url (e.g. http://localhost:8080/main.qml#1234), where ‘#1234’ is the fragment. The HTTP server serves always the same document but QML would store this document using the full URL, including the fragment. Every time we would access this URL the fragment would need to change and the QML cache would not get a positive hit. A fragment could be for example the current time in milli seconds or a random number.

Loader {
    source: 'http://localhost:8080/main.qml#' + new Date().getTime()
}





In summary templating is possible but not really recommended and does not play to the strength of QML. A better approach is to use web-services which serve JSON or XML data.




HTTP Requests

A http request is in Qt typically done using QNetworkRequest and QNetworkReply from the c++ site and then the response would be pushed using the Qt/C++ integration into the QML space. So we try to push the envelope here a little bit to use the current tools Qt Quick gives us to communicate with a network endpoint. For this we use a helper object to make http request, response cycle. It comes in the form of the java script XMLHttpRequest object.

The XMLHttpRequest object allows the user to register a response handle function and a url. A request can be sent using one of the http verbs (get, post, put, delete, ...) to make the request. When the response arrive the handle function is called. The handle function is called several times. Every-time the request state has changed (for example headers have arrived or request is done).

Here a short example:

function request() {
    var xhr = new XMLHttpRequest();
    xhr.onreadystatechange = function() {
        if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {
            print('HEADERS_RECEIVED');
        } else if(xhr.readyState === XMLHttpRequest.DONE) {
            print('DONE');
        }
    }
    xhr.open("GET", "http://example.com");
    xhr.send();
}





For a response you can get the XML format or just the raw text. It is possible to iterate over the resulting XML but more commonly used is the raw text nowadays for a JSON formatted response. The JSON document will be used to convert text to a JS object using JSON.parse(text).

...
} else if(xhr.readyState === XMLHttpRequest.DONE) {
    var object = JSON.parse(xhr.responseText.toString());
    print(JSON.stringify(object, null, 2));
}





In the response handler, we access the raw response text and convert it into a javascript object. This JSON object is now a valid JS object (in javascript an object can be an object or an array).


Nota

It seems the toString() conversion first makes the code more stable. Without the explicit conversion I had several times parser errors. Not sure what the cause it.




Flickr Calls

Let us have a look on a more real world example. A typical example is to use the Flickr service to retrieve a public feed of the new uploaded pictures. For this we can use the http://api.flickr.com/services/feeds/photos_public.gne url. Unfortunately it returns by default an XML stream, which could be easily parsed by the XmlListModel in qml. For the sake of the example we would like to concentrate on JSON data. To become a clean JSON response we need to attach some parameters to the request: http://api.flickr.com/services/feeds/photos_public.gne?format=json&nojsoncallback=1. This will return a JSON response without the JSON callback.


Nota

A JSON callback wraps the JSON response into a function call. This is a shortcut used on HTML programming where a script tag is used to make a JSON request. The response will trigger a local function defined by the callback. There is no mechanism which works with JSON callbacks in QML.



Let us first examine the response by using curl:

curl "http://api.flickr.com/services/feeds/photos_public.gne?format=json&nojsoncallback=1&tags=munich"





The response will be something like this:

{
    "title": "Recent Uploads tagged munich",
    ...
    "items": [
        {
        "title": "Candle lit dinner in Munich",
        "media": {"m":"http://farm8.staticflickr.com/7313/11444882743_2f5f87169f_m.jpg"},
        ...
        },{
        "title": "Munich after sunset: a train full of \"must haves\" =",
        "media": {"m":"http://farm8.staticflickr.com/7394/11443414206_a462c80e83_m.jpg"},
        ...
        }
    ]
    ...
}





The returned JSON document has a defined structure. An object which has a title and an items property. Where the title is a string and items is an array of objects. When converting this text into a JSON document you can access the individual entries, as it is a valid JS object/array structure.

// JS code
obj = JSON.parse(response);
print(obj.title) // => "Recent Uploads tagged munich"
for(var i=0; i<obj.items.length; i++) {
    // iterate of the items array entries
    print(obj.items[i].title) // title of picture
    print(obj.items[i].media.m) // url of thumbnail
}





As a valid JS array we can use the obj.items array also as a model for a list view. We will try to accomplish this now. First we need to retrieve the response and convert it into a valid JS object. And then we can just set the response.items property as a model to a list view.

function request() {
    var xhr = new XMLHttpRequest();
    xhr.onreadystatechange = function() {
        if(...) {
            ...
        } else if(xhr.readyState === XMLHttpRequest.DONE) {
            var response = JSON.parse(xhr.responseText.toString());
            // set JS object as model for listview
            view.model = response.items;
        }
    }
    xhr.open("GET", "http://api.flickr.com/services/feeds/photos_public.gne?format=json&nojsoncallback=1&tags=munich");
    xhr.send();
}





Here is the full source code, where we create the request, when the component is loaded. The request response is then used as model for our simple list view.

import QtQuick 2.5

Rectangle {
    width: 320
    height: 480
    ListView {
        id: view
        anchors.fill: parent
        delegate: Thumbnail {
            width: view.width
            text: modelData.title
            iconSource: modelData.media.m
        }
    }

    function request() {
        var xhr = new XMLHttpRequest();
        xhr.onreadystatechange = function() {
            if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {
                print('HEADERS_RECEIVED')
            } else if(xhr.readyState === XMLHttpRequest.DONE) {
                print('DONE')
                var json = JSON.parse(xhr.responseText.toString())
                view.model = json.items
            }
        }
        xhr.open("GET", "http://api.flickr.com/services/feeds/photos_public.gne?format=json&nojsoncallback=1&tags=munich");
        xhr.send();
    }

    Component.onCompleted: {
        request()
    }
}





When the document is fully loaded ( Component.onCompleted ) we request the latest feed content from Flickr. On arrival we parse the JSON response and set the items array as the model for our view. The list view has a delegate, which displays the thumbnail icon and the title text in a row.

An other option would be to have a placeholder ListModel and append each item onto the list model. To support larger models it is required to support pagination (e.g page 1 of 10) and lazy content retrieval.






Local files

Is it also possible to load local (XML/JSON) files using the XMLHttpRequest. For example a local file named “colors.json” can be loaded using:

xhr.open("GET", "colors.json");





We use this to read a color table and display it as a grid. It is not possible to modify the file from the Qt Quick side. To store data back to the source we would need a small REST based HTTP server or a native Qt Quick extension for file access.

import QtQuick 2.5

Rectangle {
    width: 360
    height: 360
    color: '#000'

    GridView {
        id: view
        anchors.fill: parent
        cellWidth: width/4
        cellHeight: cellWidth
        delegate: Rectangle {
            width: view.cellWidth
            height: view.cellHeight
            color: modelData.value
        }
    }

    function request() {
        var xhr = new XMLHttpRequest();
        xhr.onreadystatechange = function() {
            if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {
                print('HEADERS_RECEIVED')
            } else if(xhr.readyState === XMLHttpRequest.DONE) {
                print('DONE');
                var obj = JSON.parse(xhr.responseText.toString());
                view.model = obj.colors
            }
        }
        xhr.open("GET", "colors.json");
        xhr.send();
    }

    Component.onCompleted: {
        request()
    }
}





Instead of using the XMLHttpRequest is is also possible to use the XmlListModel to access local files.

import QtQuick.XmlListModel 2.0

XmlListModel {
    source: "http://localhost:8080/colors.xml"
    query: "/colors"
    XmlRole { name: 'color'; query: 'name/string()' }
    XmlRole { name: 'value'; query: 'value/string()' }
}





With the XmlListModel it is only possible to read XML files and not JSON files.




REST API

To use a web-service, we first need to create one. We will use Flask (http://flask.pocoo.org) a simple HTTP app server based on python to create a simple color web-service. You could also use every other web server which accepts and returns JSON data. The idea is to have a list of named colors, which can be managed via the web-service. Managed in this case means CRUD (create-read-update-delete).

A simple web-service in Flask can be written in one file. We start with an empty server.py file. Inside this file, we create some boiler-code and load our initial colors from an external JSON file. See also the Flask quickstart [http://flask.pocoo.org/docs/quickstart/] documentation.

from flask import Flask, jsonify, request
import json

colors = json.load(file('colors.json', 'r'))

app = Flask(__name__)

# ... service calls go here

if __name__ == '__main__':
    app.run(debug = True)





When you run this script, it will provide a web-server at http://localhost:5000, which does not serve anything useful yet.

We will now start adding our CRUD (Create,Read,Update,Delete) endpoints to our little web-service.


Read Request

To read data from our web-server, we will provide a GET method for all colors.

@app.route('/colors', methods = ['GET'])
def get_colors():
    return jsonify( { "colors" :  colors })





This will return the colors under the ‘/colors’ endpoint. To test this we can use curl to create a http request.

curl -i -GET http://localhost:5000/colors





Which will return us the list of colors as JSON data.




Read Entry

To read an individual color by name we provide the details endpoint, which is located under ‘/colors/<name>’. The name is a parameter to the endpoint, which identifies an individual color.

@app.route('/colors/<name>', methods = ['GET'])
def get_color(name):
    for color in colors:
        if color["name"] == name:
            return jsonify( color )





And we can test it with using curl again. For example to get the red color entry.

curl -i -GET http://localhost:5000/colors/red





It will return one color entry as JSON data.




Create Entry

Till now we have just used HTTP GET methods. To create an entry on the server side, we will use a POST method and pass the new color information with the POST data. The endpoint location is the same as to get all colors. But this time we expect a POST request.

@app.route('/colors', methods= ['POST'])
def create_color():
    color = {
        'name': request.json['name'],
        'value': request.json['value']
    }
    colors.append(color)
    return jsonify( color ), 201





Curl is flexible enough to allow us to provide JSON data as the new entry inside the POST request.

curl -i -H "Content-Type: application/json" -X POST -d '{"name":"gray1","value":"#333"}' http://localhost:5000/colors








Update Entry

To update an individual entry we use the PUT HTTP method. The endpoint is the same as to retrieve an individual color entry. When the color was updated successfully we return the updated color as JSON data.

@app.route('/colors/<name>', methods= ['PUT'])
def update_color(name):
    for color in colors:
        if color["name"] == name:
            color['value'] = request.json.get('value', color['value'])
            return jsonify( color )





In the curl request we only provide the values to be updated as JSON data and the a named endpoint to identify the color to be updated.

curl -i -H "Content-Type: application/json" -X PUT -d '{"value":"#666"}' http://localhost:5000/colors/red








Delete Entry

Deleting an entry is done using the DELETE HTTP verb. It also uses the same endpoint for an individual color, but this time the DELETE HTTP verb.

@app.route('/colors/<name>', methods=['DELETE'])
def delete_color(name):
    success = False
    for color in colors:
        if color["name"] == name:
            colors.remove(color)
            success = True
    return jsonify( { 'result' : success } )





This request looks similar like the GET request for an individual color.

curl -i -X DELETE http://localhost:5000/colors/red





Now we can read all colors, read a specific color, create a new color, update a color and delete a color. Also we know the HTTP endpoints to our API.








	Action
	HTTP
	Endpoint




	Read All
	GET
	http://localhost:5000/colors


	Create Entry
	POST
	http://localhost:5000/colors


	Read Entry
	GET
	http://localhost:5000/colors/<name>


	Update Entry
	PUT
	http://localhost:5000/colors/<name>


	Delete Entry
	DELETE
	http://localhost:5000/colors/<name>





Our little REST server is complete now and we can focus on QML and the client side. To create an easy to use API we need to map each action to an individual HTTP request and provide a simple API to our users.




Client REST

To demonstrate a REST client we write a small color grid. The color grid displays the colors retrieved from the web-service via HTTP requests. Our user interface provides the following commands:


	Get color list

	Create color

	Read last color

	Update last color

	Delete last color



We bundle our API into an own JS file called colorservice.js and import it into our UI as Service. Inside the service module we create a helper function to make the HTTP requests for us:

// colorservice.js
function request(verb, endpoint, obj, cb) {
    print('request: ' + verb + ' ' + BASE + (endpoint?'/' + endpoint:''))
    var xhr = new XMLHttpRequest();
    xhr.onreadystatechange = function() {
        print('xhr: on ready state change: ' + xhr.readyState)
        if(xhr.readyState === XMLHttpRequest.DONE) {
            if(cb) {
                var res = JSON.parse(xhr.responseText.toString())
                cb(res);
            }
        }
    }
    xhr.open(verb, BASE + (endpoint?'/' + endpoint:''));
    xhr.setRequestHeader('Content-Type', 'application/json');
    xhr.setRequestHeader('Accept', 'application/json');
    var data = obj?JSON.stringify(obj):''
    xhr.send(data)
}





It takes four arguments. The verb, which defines the HTTP verb to be used (GET, POST, PUT, DELETE). The second parameter is the endpoint to be used as postfix to the BASE address (e.g. ‘http://localhost:5000/colors‘). The third parameter is the optional obj, to be send as JSON data to the service. The last parameter defines a callback to be called, when the response returns. The callback receives a response object with the response data. Before we send the request, we indicate that we send and accept JSON data by modifying the request header.

Using this request helper function we can implement the simple commands we defined earlier (create, read, update, delete):

// colorservice.js
function get_colors(cb) {
    // GET http://localhost:5000/colors
    request('GET', null, null, cb)
}

function create_color(entry, cb) {
    // POST http://localhost:5000/colors
    request('POST', null, entry, cb)
}

function get_color(name, cb) {
    // GET http://localhost:5000/colors/<name>
    request('GET', name, null, cb)
}

function update_color(name, entry, cb) {
    // PUT http://localhost:5000/colors/<name>
    request('PUT', name, entry, cb)
}

function delete_color(name, cb) {
    // DELETE http://localhost:5000/colors/<name>
    request('DELETE', name, null, cb)
}





This code resides in the service implementation. In the UI we use the service to implement our commands. We have a ListModel with the id gridModel as data provider for the GridView. The commands are indicated using a Button ui element.

Reading the color list from the server.

// rest.qml
import "colorservice.js" as Service
...
// read colors command
Button {
    text: 'Read Colors';
    onClicked: {
        Service.get_colors( function(resp) {
            print('handle get colors resp: ' + JSON.stringify(resp));
            gridModel.clear();
            var entries = resp.data;
            for(var i=0; i<entries.length; i++) {
                gridModel.append(entries[i]);
            }
        });
    }
}





Create a new color entry on the server.

// rest.qml
import "colorservice.js" as Service
...
// create new color command
Button {
    text: 'Create New';
    onClicked: {
        var index = gridModel.count-1
        var entry = {
            name: 'color-' + index,
            value: Qt.hsla(Math.random(), 0.5, 0.5, 1.0).toString()
        }
        Service.create_color(entry, function(resp) {
            print('handle create color resp: ' + JSON.stringify(resp))
            gridModel.append(resp)
        });
    }
}





Reading a color based on its name.

// rest.qml
import "colorservice.js" as Service
...
// read last color command
Button {
    text: 'Read Last Color';
    onClicked: {
        var index = gridModel.count-1
        var name = gridModel.get(index).name
        Service.get_color(name, function(resp) {
            print('handle get color resp:' + JSON.stringify(resp))
            message.text = resp.value
        });
    }
}





Update a color entry on the server based on the color name.

// rest.qml
import "colorservice.js" as Service
...
// update color command
Button {
    text: 'Update Last Color'
    onClicked: {
        var index = gridModel.count-1
        var name = gridModel.get(index).name
        var entry = {
            value: Qt.hsla(Math.random(), 0.5, 0.5, 1.0).toString()
        }
        Service.update_color(name, entry, function(resp) {
            print('handle update color resp: ' + JSON.stringify(resp))
            var index = gridModel.count-1
            gridModel.setProperty(index, 'value', resp.value)
        });
    }
}





Delete a color by the color name.

// rest.qml
import "colorservice.js" as Service
...
// delete color command
Button {
    text: 'Delete Last Color'
    onClicked: {
        var index = gridModel.count-1
        var name = gridModel.get(index).name
        Service.delete_color(name)
        gridModel.remove(index, 1)
    }
}





This concludes the CRUD (create, read, update, delete) operations using a REST API. There are also other possibilities to generate a Web-Service API. One could be module based and each module would have an one endpoint. And the API could be defined using JSON RPC (http://www.jsonrpc.org/). Sure also XML based API are possible and but the JSON approach has great advantages as the parsing is build into the QML/JS as part of JavaScript.






Authentication using OAuth

OAuth is an open protocol to allow secure authorization in a simple and standard method from web, mobile and desktop applications. OAuth is used to authenticate a client against common web-services such as Google, Facebook and Twitter.


Nota

For a custom web-service you could also use the standard HTTP authentication for example by using the XMLHttpRequest username and password in the get method (e.g. xhr.open(verb, url, true, username, password))



OAuth is currently not part of a QML/JS API. So you would need to write some C++ code and export the authentication to QML/JS. Another issue would be the secure storage of the access token.

Here are some links which we find useful:


	http://oauth.net/

	http://hueniverse.com/oauth/

	https://github.com/pipacs/o2

	http://www.johanpaul.com/blog/2011/05/oauth2-explained-with-qt-quick/






Engin IO

Engin.IO is a web-service run by DIGIA. It enables to access from inside Qt/QML application to the NoSQL storage from Engin.IO. It is a cloud based storage object store with an easy access Qt/QML API and an administration console. If you want to store some data in the cloud from a QML application, this would be an easy entry path with an excellent QML/JS support.

Please refer to the EnginIO [http://engin.io] documentation for further help.




Web Sockets

The WebSockets module provides an impementation of the WebSockets protocol for WebSockets clients and servers. It mirrors the Qt CPP module. It allows to send string and binary messages using a full duplex communication channel. A websocket is normally established by making a HTTP connection to the server and the server then “upgrades” the connection to a WebSocket connection.

In Qt/QML you can also simple use the WebSocket and WebSocketServer objects to creates direct websocket connection. The websocket protocol uses the “ws” url schema or “wss” for a secure connection.

You can use the web socket qml module by importing it first.

import Qt.WebSockets 1.0

WebSocket {
    id: socket
}





To test your web socket we will use the echo server from http://websocket.org.

import QtQuick 2.5
import Qt.WebSockets 1.0

Text {
    width: 480
    height: 48

    horizontalAlignment: Text.AlignHCenter
    verticalAlignment: Text.AlignVCenter

    WebSocket {
        id: socket
        url: "ws://echo.websocket.org"
        active: true
        onTextMessageReceived: {
            text = message
        }
        onStatusChanged: {
            if (socket.status == WebSocket.Error) {
                console.log("Error: " + socket.errorString)
            } else if (socket.status == WebSocket.Open) {
                socket.sendTextMessage("ping")
            } else if (socket.status == WebSocket.Closed) {
                text += "\nSocket closed"
            }
        }
    }
}





You should see the ping message we send socket.sendTextMessage("ping") as response in the text field.


[image: ../../_images/ws_echo.png]



WS Server

You can easily create your own WS server using the C++ part of the Qt WebSocket or use a different WS implementation, which I find very interesting. It is interesting because it allows to connect the amazing rendering quality of QML with the great expanding web application servers. In this example we will use a Node JS based web socket server using the ws [https://npmjs.org/package/ws] module. For this you first need to install node js [http://nodejs.org/]. Afterwards create a ws_server folder and install the ws package using the node package manager (npm).

The code shall create a simple echo server in NodeJS to echo our messages back to our QML client.


[image: ../../_images/ws_client.png]


$ cd ws_server
$ npm install ws





The npm tool downloads and installs the ws package and dependencies into you local folder.

A server.js file will be our server implementation. The server code will create a web socket server on port 3000 and listens to an incoming connection. On an incoming connection it will send out a greeting and waits for client messages. Each message a client sends on a socket will be send back to the client.

var WebSocketServer = require('ws').Server;

var server = new WebSocketServer({ port : 3000 });

server.on('connection', function(socket) {
	console.log('client connected');
	socket.on('message', function(msg) {
		console.log('Message: %s', msg);
		socket.send(msg);
	});
	socket.send('Welcome to Awesome Chat');
});

console.log('listening on port ' + server.options.port);





You need to get used to the notation of JavaScript and the function callbacks.




WS Client

On the client side we need a list view to display the messages and a TextInput for the user to enter a new chat message.

We will use a label with white color in the example.

// Label.qml
import QtQuick 2.5

Text {
    color: '#fff'
    horizontalAlignment: Text.AlignLeft
    verticalAlignment: Text.AlignVCenter
}





Our chat view is a list view, where the text is appended to a list model. Each entry is displayed using a row of prefix and message label. We use a cell width cw factor to split the with into 24 columns.

// ChatView.qml
import QtQuick 2.5

ListView {
    id: root
    width: 100
    height: 62

    model: ListModel {}

    function append(prefix, message) {
        model.append({prefix: prefix, message: message})
    }

    delegate: Row {
        width: root.width
        height: 18
        property real cw: width/24
        Label {
            width: cw*1
            height: parent.height
            text: model.prefix
        }
        Label {
            width: cw*23
            height: parent.height
            text: model.message
        }
    }
}





The chat input is just a simple text input wrapped with a colored border.

// ChatInput.qml
import QtQuick 2.5

FocusScope {
    id: root
    width: 240
    height: 32
    Rectangle {
        anchors.fill: parent
        color: '#000'
        border.color: '#fff'
        border.width: 2
    }

    property alias text: input.text

    signal accepted(string text)

    TextInput {
        id: input
        anchors.left: parent.left
        anchors.right: parent.right
        anchors.verticalCenter: parent.verticalCenter
        anchors.leftMargin: 4
        anchors.rightMargin: 4
        onAccepted: root.accepted(text)
        color: '#fff'
        focus: true
    }
}





When the web socket receives a message it appends the message to the chat view. Same applies for a status change. Also when the user enters a chat message a copy is appended to the chat view on the client side and the message is send to the server.

// ws_client.qml
import QtQuick 2.5
import Qt.WebSockets 1.0

Rectangle {
    width: 360
    height: 360
    color: '#000'

    ChatView {
        id: box
        anchors.left: parent.left
        anchors.right: parent.right
        anchors.top: parent.top
        anchors.bottom: input.top
    }
    ChatInput {
        id: input
        anchors.left: parent.left
        anchors.right: parent.right
        anchors.bottom: parent.bottom
        focus: true
        onAccepted: {
            print('send message: ' + text)
            socket.sendTextMessage(text)
            box.append('>', text)
            text = ''
        }
    }
    WebSocket {
        id: socket

        url: "ws://localhost:3000"
        active: true
        onTextMessageReceived: {
            box.append('<', message)
        }
        onStatusChanged: {
            if (socket.status == WebSocket.Error) {
                box.append('#', 'socket error ' + socket.errorString)
            } else if (socket.status == WebSocket.Open) {
                box.append('#', 'socket open')
            } else if (socket.status == WebSocket.Closed) {
                box.append('#', 'socket closed')
            }
        }
    }
}





You need first run the server and then the client. There is no retry connection mechanism in our simple client.

Running the server

$ cd ws_server
$ node server.js





Running the client

$ cd ws_client
$ qmlscene ws_client.qml





When entering text and pressing enter you should see something like this.


[image: ../../_images/ws_client.png]







Summary

This concludes our chapter about QML networking. Please bear in mind Qt has on the native side a much richer networking API as on the QML side currently. But the idea of the chapter is to push the boundaries of QML networking and how to integrate with cloud based services.
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Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



This chapter will cover storing data using Qt Quick in Qt 5. Qt Quick offers only limited ways of storing local data directly. In this sense it acts more like a browser. In many projects storing data is handled by the C++ backend and the required functionality is exported to the Qt Quick frontend side. Qt Quick does not provide you with access to the host file system to read and write files as you are used from the Qt C++ side. So it would be the task of the backend engineer to write such a plugin or maybe use a network channel to communicate with a local server, which provides these capabilities.

Every application need to store smaller and larger information persistently. This can be done locally on the file system or remote on a server. Some information will be structured and simple (e.g. settings), some will be large and complicated for example documentation files and some will be large and structured and will require some sort of database connection. Here we will mainly cover the built in capabilities of Qt Quick to store data as also the networked ways.


Settings

Qt comes on its native side with the C++ QSettings class, which allows you to store the application settings (aka options, preferences) in a system dependent way. It uses the infrastructure available from your OS. Additional it supports a common INI file format for handling cross platform settings files.

In Qt 5.2 Settings have entered the QML world. The API is still in the labs module, which means the API may break in the future. So be aware.

Here is a small example, which applies a color value to a base rectangle. Every time the user clicks on the window a new random color is generated. When the application is closed and relaunched again you should see your last color. The default color should be the color initially set on the root rectangle.

import QtQuick 2.5
import Qt.labs.settings 1.0

Rectangle {
    id: root
    width: 320; height: 240
    color: '#000000'
    Settings {
        id: settings
        property alias color: root.color
    }
    MouseArea {
        anchors.fill: parent
        onClicked: root.color = Qt.hsla(Math.random(), 0.5, 0.5, 1.0);
    }
}





The settings value are stored every time the value changes. This might be not always what you want. To store the settings only when required you can use standard properties.

Rectangle {
    id: root
    color: settings.color
    Settings {
        id: settings
        property color color: '#000000'
    }
    function storeSettings() { // executed maybe on destruction
        settings.color = root.color
    }
}





It is also possible to store settings into different categories using the category property.

Settings {
    category: 'window'
    property alias x: window.x
    property alias y: window.x
    property alias width: window.width
    property alias height: window.height
}





The settings are stored according your application name, organization and domain. This information is normally set in the main function of your c++ code.

int main(int argc, char** argv) {
    ...
    QCoreApplication::setApplicationName("Awesome Application");
    QCoreApplication::setOrganizationName("Awesome Company");
    QCoreApplication::setOrganizationDomain("org.awesome");
    ...
}








Local Storage - SQL

Qt Quick supports an local storage API known from the web browsers the local storage API. the API is available under “import QtQuick.LocalStorage 2.0”.

In general it stores the content into a SQLITE database in system specific location in an unique ID based file based on the given database name and version. It is not possible to list or delete existing databases. You can find the storage location from QQmlEngine::offlineStoragePath().

You use the API by first creating a database object and then creating transactions on the database. Each transaction can contain one or more SQL queries. The transaction will roll-back when a SQL query will fail inside the transaction.

For example to read from a simple notes table with a text column you could use the local storage like this:

import QtQuick 2.5
import QtQuick.LocalStorage 2.0

Item {
    Component.onCompleted: {
        var db = LocalStorage.openDatabaseSync("MyExample", "1.0", "Example database", 10000);
        db.transaction( function(tx) {
            var result = tx.executeSql('select * from notes');
            for(var i = 0; i < result.rows.length; i++) {
                    print(result.rows[i].text);
                }
            }
        });
    }
}





Crazy Rectangle

As an example assume we would like to store the position of a rectangle on our scene.


[image: ../../_images/crazy_rect.png]


Here our base example.

import QtQuick 2.5

Item {
    width: 400
    height: 400

    Rectangle {
        id: crazy
        objectName: 'crazy'
        width: 100
        height: 100
        x: 50
        y: 50
        color: "#53d769"
        border.color: Qt.lighter(color, 1.1)
        Text {
            anchors.centerIn: parent
            text: Math.round(parent.x) + '/' + Math.round(parent.y)
        }
        MouseArea {
            anchors.fill: parent
            drag.target: parent
        }
    }
}





You can drag the rectangle freely around. When you close the application and launch it again the rectangle is at the same position.

Now we would like to add that the x/y position of the rectangle is stored inside the SQL DB. For this we need to add an init, read and store database function. These function are called when on component completed and on component destruction.

import QtQuick 2.5
import QtQuick.LocalStorage 2.0

Item {
    // reference to the database object
    property var db;

    function initDatabase() {
        // initialize the database object
    }

    function storeData() {
        // stores data to DB
    }

    function readData() {
        // reads and applies data from DB
    }


    Component.onCompleted: {
        initDatabase();
        readData();
    }

    Component.onDestruction: {
        storeData();
    }
}





You could also extract the DB code in an own JS library, which does all the logic. This would be the preferred way if the logic gets more complicated.

In the database initialization function we create the DB object and ensure the SQL table is created.

function initDatabase() {
    print('initDatabase()')
    db = LocalStorage.openDatabaseSync("CrazyBox", "1.0", "A box who remembers its position", 100000);
    db.transaction( function(tx) {
        print('... create table')
        tx.executeSql('CREATE TABLE IF NOT EXISTS data(name TEXT, value TEXT)');
    });
}





The application next calls the read function to read existing data back from the database. Here we need to differentiate if there is already data in the table. To check we look into how many rows the select clause has returned.

function readData() {
    print('readData()')
    if(!db) { return; }
    db.transaction( function(tx) {
        print('... read crazy object')
        var result = tx.executeSql('select * from data where name="crazy"');
        if(result.rows.length === 1) {
            print('... update crazy geometry')
            // get the value column
            var value = result.rows[0].value;
            // convert to JS object
            var obj = JSON.parse(value)
            // apply to object
            crazy.x = obj.x;
            crazy.y = obj.y;
        }
    });
}





We expect the data is stored a JSON string inside the value column. This is not typical SQL like, but works nicely with JS code. So instead of storing the x,y as properties in the table we store them as a complete JS object using the JSON stringify/parse methods. At the end we get a valid JS object with x and y properties, which we can apply on our crazy rectangle.

To store the data, we need to differentiate the update and insert cases. We use update when a record already exists and insert if no record under the name “crazy” exists.

function storeData() {
    print('storeData()')
    if(!db) { return; }
    db.transaction( function(tx) {
        print('... check if a crazy object exists')
        var result = tx.executeSql('SELECT * from data where name = "crazy"');
        // prepare object to be stored as JSON
        var obj = { x: crazy.x, y: crazy.y };
        if(result.rows.length === 1) {// use update
            print('... crazy exists, update it')
            result = tx.executeSql('UPDATE data set value=? where name="crazy"', [JSON.stringify(obj)]);
        } else { // use insert
            print('... crazy does not exists, create it')
            result = tx.executeSql('INSERT INTO data VALUES (?,?)', ['crazy', JSON.stringify(obj)]);
        }
    });
}





Instead of selecting the whole record set we could also use the SQLITE count function like this: SELECT COUNT(*) from data where name = "crazy" which would return use one row with the amount of rows affected by the select query. Otherwise this is common SQL code. As an additional feature, we use the SQL value binding using the ? in the query.

Now you can drag the rectangle and when you quit the application the database stores the x/y position and applies it on the next application run.




Other Storage APIs

To store directly from within QML these are the major storage types. The real strength of Qt Quick comes from the fact to extend it with C++ to interface with your native storage systems or use the network API to interface with a remote storage system, like the Qt cloud.
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Autor da secção: e8johan [https://bitbucket.org/e8johan]


Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



Until now, we have treated QML as a tool for constructing a static set of scenes and navigating between them. Depending on various states and logic rules, a live and dynamic user interface is constructed. By working with QML and JavaScript in a more dynamic manner, the flexibility and possibilities expand even further. Components can be loaded and instantiated at run-time, elements can be destroyed. Dynamically created user interfaces can be saved to disk and later restored.


Loading Components Dynamically

The easiest way to dynamically load different parts of QML is to use the Loader element. It serves as a placeholder to the item that is being loaded. The item to load is controlled through either the source property or the sourceComponent property. The former loads the item from a given URL, while the latter instantiates a component.

As the loader serves as a placeholder for the item being loaded, its size depends on the size of the item, and vise versa. If the Loader element has a size, either by having set width and height or through anchoring, the loaded item will be given the loader’s size. If the Loader has no size, it is resized in accordance to the size of the item being loaded.

The example described below demonstrates how two separate user interface parts can be loaded into the same space using a Loader element. The idea is to have a speed dial that can be either digital or analog, as shown in the illustration below. The code surrounding the dial is unaffected by which item that is loaded for the moment.


[image: ../../_images/loader-analog.png]



[image: ../../_images/loader-digital.png]


The first step in the application is to declare a Loader element. Notice that the source property is left out. This is because the source depends on which state the user interface is in.

Loader {
    id: dialLoader

    anchors.fill: parent
}





In the states property of the parent of dialLoader a set of PropertyChanges elements drives the loading of different QML files depending on the state. The source property happens to be a relative file path in this example, but it can just as well be a full URL, fetching the item over the web.

    states: [
        State {
            name: "analog"
            PropertyChanges { target: analogButton; color: "green"; }
            PropertyChanges { target: dialLoader; source: "Analog.qml"; }
        },
        State {
            name: "digital"
            PropertyChanges { target: digitalButton; color: "green"; }
            PropertyChanges { target: dialLoader; source: "Digital.qml"; }
        }
    ]





In order to make the loaded item come alive, its speed property must be bound to the root speed property. This cannot be done as a direct binding as the item not always is loaded and changes over time. Instead a Binding element must be used. The target property of the binding is changed every time the Loader triggers the onLoaded signal.

    Loader {
        id: dialLoader

        anchors.left: parent.left
        anchors.right: parent.right
        anchors.top: parent.top
        anchors.bottom: analogButton.top

        onLoaded: {
            binder.target = dialLoader.item;
        }
    }
    Binding {
        id: binder

        property: "speed"
        value: speed
    }





The onLoaded signal lets the loading QML act when the item has been loaded. In a similar fashion, the QML being loaded can rely on the Component.onCompleted signal. This is signal actually available for all components, regardless how they are loaded. For instance, the root component of an entire application can us it to kick-start itself when the entire user interface has been loaded.


Connecting Indirectly

When creating QML elements dynamically, you cannot connect to signals using the onSignalName approach used for static setup. Instead, the Connections element must be used. It connects to any number of signals of a target element.

Having set the target property of a Connections element, the signals can be connected as usual, that is, using the onSignalName approach. However, by altering the target property, different elements can be monitored at different times.


[image: ../../_images/connections.png]


In the example show above, a user interface consisting of two clickable areas is presented to the user. When either area is clicked, it is flashed using an animation. The left area is shown in the code snippet below. In the MouseArea, the leftClickedAnimation is triggered, causing the area to flash.

        Rectangle {
            id: leftRectangle

            width: 290
            height: 200

            color: "green"

            MouseArea {
                id: leftMouseArea
                anchors.fill: parent
                onClicked: leftClickedAnimation.start();
            }

            Text {
                anchors.centerIn: parent
                font.pixelSize: 30
                color: "white"
                text: "Click me!"
            }
        }





In addition to the two clickable areas, a Connections element is used. This triggers a third animation when the active, i.e. the target of the element, is clicked.

    Connections {
        id: connections
        onClicked: activeClickedAnimation.start();
    }





To determine which MouseArea to target, two states are defined. Notice that we cannot set the target property using a PropertyChanges element, as it already contains a target property. Instead a StateChangeScript is utilized.

    states: [
        State {
            name: "left"
            StateChangeScript {
                script: connections.target = leftMouseArea
            }
        },
        State {
            name: "right"
            StateChangeScript {
                script: connections.target = rightMouseArea
            }
        }
    ]





When trying out the example, it is worth noticing that when multiple signal handlers are used, all are invoked. The execution order of these is, however, undefined.

When creating a Connections element without setting the target property, the property defaults to parent. This means that it explicitly has to be set to null to avoid catching signals from the parent until the target is set. This behavior does make it possible to create custom signal handler components based on a Connections element. This way, the code reacting to the signals can be encapsulated and re-used.

In the example below, the Flasher component can be put inside any MouseArea. When clicked, it triggers an animation, causing the parent to flash. In the same MouseArea the actual task being triggered can also be carried out. This separates the standardized user feedback, i.e. the flashing, from the actual action.

import QtQuick 2.5

Connections {
	onClicked: {
		// Automatically targets the parent
	}
}





To use the Flasher, simply instantiate a Flasher within each MouseArea, and it all works.

import QtQuick 2.5

Item {
	// A background flasher that flashes the background of any parent MouseArea
}





When using a Connections element to monitor the signals of multiple types of target elements, you sometimes find yourself in a situation where the available signals vary between the targets. This results in the Connections element outputting run-time errors as signals are missed. To avoid this, the ignoreUnknownSignal property can be set to true. This ignores all such errors.


Nota

It is usually a bad idea to supress error messages.






Binding Indirectly

Just as it is not possible to connect to signals of dynamically created elements directly, nor it is possible to bind properties of a dynamically created element without working with a bridge element. To bind a property of any element, including dynamically created elements, the Binding element is used.

The Binding element lets you specify a target element, a property to bind and a value to bind it to. Through using a Binding` element, it is, for instance, possible to bind properties of a dynamically loaded element. This was demonstrated in the introductory example in this chapter, as shown below.

    Loader {
        id: dialLoader

        anchors.left: parent.left
        anchors.right: parent.right
        anchors.top: parent.top
        anchors.bottom: analogButton.top

        onLoaded: {
            binder.target = dialLoader.item;
        }
    }
    Binding {
        id: binder

        property: "speed"
        value: speed
    }





As the target element of a Binding not always is set, and perhaps not always has a given property, the when property of the Binding element can be used to limit the time when the binding is active. For instance, it can be limited to specific modes in the user interface.






Creating and Destroying Objects

The Loader element makes it possible to populate part of a user interface dynamically. However, the overall structure of the interface is still static. Through JavaScript it is possible to take one more step and to instantiate QML elements completely dynamically.

Before we dive into the details of creating elements dynamically, we need to understand the workflow. When loading a piece of QML from a file or even over the Internet, a component is created. The component encapsulates the interpreted QML code and can be used to create items. This means that loading a piece of QML code and instantiating items from it is a two stage process. First the QML code is parsed into a component. Then the component is used to instantiate actual item objects.

In addition to creating elements from QML code stored in files or on servers, it is also possible to create QML objects directly from text strings containing QML code. The dynamically created items are then treated in a similar fashion once instantiated.


Dynamically Loading and Instantiating Items

When loading a piece of QML, it is first interpreted into a component. This includes loading dependencies and validating the code. The location of the QML being loaded can be either a local file, a Qt resource, or even a distance network location specified by a URL. This means that the loading time can be everything from instant, for instance a Qt resource located in RAM without any non-loaded dependencies, to very long, meaning a piece of code located on a slow server with multiple dependencies that needs to be loaded.

The status of a component being created can be tracked by its status property. The available values are Component.Null, Component.Loading, Component.Ready and Component.Error. The Null to Loading to Ready is the usual flow. At any stage the status can change to Error. In that case, the component cannot be used to create new object instances. The Component.errorString() function can be used to retrieve a user readable error description.

When loading components over slow connections, the progress property can be of use. It ranges from 0.0, meaning nothing has been loaded, to 1.0 indicating that all has been loaded. When the component’s status changes to Ready, the component can be used to instantiate objects. The code below demonstrates how that can be achieved, taking into account the event of the component becoming ready or failing to be created directly, as well as the case where to component is ready slightly later.

var component;

function createImageObject() {
    component = Qt.createComponent("dynamic-image.qml");
    if (component.status === Component.Ready || component.status === Component.Error) {
        finishCreation();
    } else {
        component.statusChanged.connect(finishCreation);
    }
}

function finishCreation() {
    if (component.status === Component.Ready) {
        var image = component.createObject(root, {"x": 100, "y": 100});
        if (image === null) {
            console.log("Error creating image");
        }
    } else if (component.status === Component.Error) {
        console.log("Error loading component:", component.errorString());
    }
}





The code above is kept in a separate JavaScript source file, referenced from the main QML file.

import QtQuick 2.5
import "create-component.js" as ImageCreator

Item {
    id: root

    width: 1024
    height: 600

    Component.onCompleted: ImageCreator.createImageObject();
}





The createObject function of a component is used to create object instances, as shown above. This not only applies to dynamically loaded components, but also Component elements inlined in the QML code. The resulting object can be used in the QML scene like any other object. The only difference is that it does not have an id.

The createObject function takes two arguments. The first is a parent object of the type Item. The second is a list of properties and values on the format {"name": value, "name": value}. This is demonstrated in the example below. Notice that the properties argument is optional.

var image = component.createObject(root, {"x": 100, "y": 100});






Nota

A dynamically created component instance is not different to an in-line Component element. The in-line Component element also provides functions to instantiate objects dynamically.






Dynamically Instantiating Items from Text

Sometimes, it is convenient to be able to instantiate an object from a text string of QML. If nothing else, it is quicker than putting the code in a separate source file. For this, the Qt.createQmlObject function is used.

qThe function takes three arguments: qml, parent and filepath. The qml argument contains the string of QML code to instantiate. The parent argument provides a parent object to the newly created object. The filepath argument is used when reporting any errors from the creation of the object. The result returned from the function is either a new object, or null.


Aviso

The createQmlObject function always returns immediately. For the function to succeed, all the dependencies of the call must be loaded. This means that if the code passed to the function refers to a non-loaded component, the call will fail and return null. To better handle this, the createComponent / createObject approach must be used.



The objects created using the Qt.createQmlObject function resembles any other dynamically created object. That means that it is identical to every other QML object, apart from not having an id. In the example below, a new Rectangle element is instantiated from in-line QML code when the root element has been created.

import QtQuick 2.5

Item {
    id: root

    width: 1024
    height: 600

    function createItem() {
        Qt.createQmlObject("import QtQuick 2.5; Rectangle { x: 100; y: 100; width: 100; height: 100; color: \"blue\" }", root, "dynamicItem");
    }

    Component.onCompleted: root.createItem();
}








Managing Dynamically Created Elements

Dynamically created objects can be treated as any other object in a QML scene. However, there are some pitfalls that needs to be handled. The most important is the concept of creation contexts.

The creation context of a dynamically created object is the context within it is being created. This is not necessarily the same context as the parent exists in. When the creation context is destroyed, so is the bindings concerning the object. This means that it is important to implement the creation of dynamic objects in a place in the code which will be instantiated during the entire life-time of the objects.

Dynamically created objects can also be dynamically destroyed. When doing this, there is a rule of thumb: never attempt to destroy an object that you have not created. This also includes elements that you have created, but not using a dynamic mechanism such as Component.createObject or createQmlObject.

An object is destroyed by calling its destroy function. The function takes an optional argument which is an integer specifying how many milliseconds the objects shall exist before being destroyed. This is useful to, for instance, let the object complete a final transition.

item = Qt.createQmlObject(...);
...
item.destroy();






Nota

It is possible to destroy on object from within, making it possible to create self-destroying popup windows for instance.








Tracking Dynamic Objects

Working with dynamic objects, it is often necessary to track the created objects. Another common feature is to be able to store and restore the state of the dynamic objects. Both these tasks are easily handled using a ListModel that we populate dynamically.

In the example shown below two types of elements, rockets and ufos, can be created and moved around by the user. In order to be able to manipulate the entire scene of dynamically created elements, we use a model to track the items.


Por fazer

illustration



The model, a ListModel, is populated as the items are created. The object reference is tracked along side the source URL used when instantiating it. The latter is not strictly needed for tracking the objects, but will come in handy later.

import QtQuick 2.5
import "create-object.js" as CreateObject

Item {
    id: root

    ListModel {
        id: objectsModel
    }

    function addUfo() {
        CreateObject.create("ufo.qml", root, itemAdded);
    }

    function addRocket() {
        CreateObject.create("rocket.qml", root, itemAdded);
    }

    function itemAdded(obj, source) {
        objectsModel.append({"obj": obj, "source": source})
    }





As you can tell from the example above, the create-object.js is a more generalized form of the JavaScript introduced earlier. The create method uses three arguments: a source URL, a root element and a callback to invoke when finished. The callback gets called with two arguments: a reference to the newly created object and the source URL used.

This means that each time addUfo or addRocket functions are called, the itemAdded function will be called when the new object has been created. The latter will append the object reference and source URL to the objectsModel model.

The objectsModel can be used in many ways. In the example in question, the clearItems function relies on it. This function demonstrates two things. First, how to iterate over the model and perform a task, i.e. calling the destroy function for each item to remove it. Secondly, it highlights the fact that the model is not updated as objects are destroyed. Instead of removing the model item connected to the object in question, the obj property of that model item is set to null. To remedy this, the code explicitly has to clear the model item as the objects are removed.

    function clearItems() {
        while(objectsModel.count > 0) {
            objectsModel.get(0).obj.destroy();
            objectsModel.remove(0);
        }
    }





Having a model representing all dynamically created items, it is easy to create a function that serializes the items. In the example code, the serialized information consists of the source URL of each object along its x and y properties. These are the properties that can be altered by the user. The information is used to build an XML document string.

    function serialize() {
        var res = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<scene>\n";

        for(var ii=0; ii < objectsModel.count; ++ii) {
            var i = objectsModel.get(ii);
            res += "  <item>\n    <source>" + i.source + "</source>\n    <x>" + i.obj.x + "</x>\n    <y>" + i.obj.y + "</y>\n  </item>\n"
        }

        res += "</scene>";

        return res;
    }





The XML document string can be used with a XmlListModel by setting the xml property of the model. In the code below, the model is shown along the deserialize function. The deserialize function kickstarts the deserialization by setting the dsIndex to refer to the first item of the model and then invoking the creation of that item. The callback, dsItemAdded then sets that x and y properties of the newly created object. It then updates the index and creates the nexts object, if any.

    XmlListModel {
        id: xmlModel
        query: "/scene/item"
        XmlRole { name: "source"; query: "source/string()" }
        XmlRole { name: "x"; query: "x/string()" }
        XmlRole { name: "y"; query: "y/string()" }
    }

    function deserialize() {
        dsIndex = 0;
        CreateObject.create(xmlModel.get(dsIndex).source, root, dsItemAdded);
    }

    function dsItemAdded(obj, source) {
        itemAdded(obj, source);
        obj.x = xmlModel.get(dsIndex).x;
        obj.y = xmlModel.get(dsIndex).y;

        dsIndex ++;

        if (dsIndex < xmlModel.count)
            CreateObject.create(xmlModel.get(dsIndex).source, root, dsItemAdded);
    }

    property int dsIndex





The example demonstrates how a model can be used to track created items, and how easy it is to serialize and deserialize such information. This can be used to store a dynamically populated scene such as a set of widgets. In the example, a model was used to track each item.

An alterante solution would be to use the children property of the root of a scene to track items. This, however, requres the items themselves to know the source URL to use to re-create them. It also requires the scene to consist only of dynamically created items, to avoid attempting to serialize and later deserialize any statically allocated objects.




Summary

In this chapter we have looked at creating QML elements dynamically. This lets us create QML scenes freely, opening the door for user configurability and plug-in based architectures.

The easiest way to dynamically load a QML element is to use a Loader element. This acts as a placeholder for the contents being loaded.

For a more dynamic approach, the Qt.createQmlObject function can be used to instantiate a string of QML. This approach does, however, have limitations. The full blown solution is to dynamically create a Component using the Qt.createComponent function. Objects are then created by calling the createObject function of a Component.

As bindings and signal connections rely on the existence of an object id, or access to the object instantiation, an alternate approach must be used for dynamically created objects. To create a binding, the Binding element is used. The Connections element makes it possible to connect to signals of a dynamically created object.

One of the challenges of working with dynamically created items is to keep track of them. This can be done using a ListModel. By having a model tracking the dynamically created items, it is possible to implement functions for serialization and deserialization, making it possible to store and restore dynamically created scenes.
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Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



JavaScript is the lingua-franca on web client development. It also starts to get traction on web server development mainly by node js. As such it is a well suited addition as an imperative language onto the side of declarative QML language. QML itself as a declarative language is used to express the user interface hierachy but is limited to express operational code. Sometimes you need a way to express operations, here JavaScript comes into play.


Nota

There is an open question in the Qt community about the right mixture about QML/JS/QtC++ in a modern Qt application. The commonly agreed recommended mixture is to limit the JS part of your application to a minimum and do your business logic inside QtC++ and the UI logic inside QML/JS.

This book pushes the boundaries, which is not always the right mix for a product development and not for everyone. It is important to follow your team skills and your personal taste. In doubt follow the recommendation.



Here a short example how JS looks like, mixtured in QML:

Button {
  width: 200
  height: 300
  property bool checked: false
  text: "Click to toggle"

  // JS function
  function doToggle() {
    checked = !checked
  }

  onTriggered: {
    // this is also JavaScript
    doToggle();
    console.log('checked: ' + checked)
  }
}





So JavaScript can come in many places inside QML as a standalone JS function, as a JS module and it can be on every right side of a property binding.

import "util.js" as Util // import a pure JS module

Button {
  width: 200
  height: width*2 // JS on the right side of property binding

  // standalone function (not really useful)
  function log(msg) {
    console.log("Button> " + msg);
  }

  onTriggered: {
    // this is JavaScript
    log();
    Qt.quit();
  }
}





Within QML you declare the user interface, with JavaScript you make it functional. So how much JavaScript should you write? It depends on your style and how familar you are with JS development. JS is a loosely typed language, which makes it difficult to spot type defects. Also functions expect all argument variations, which can be a very nasty bug to spot. The way to spot defects is rigorous unit testing or acceptance testing. So if you develop real logic (not some glue lines of code) in JS you should really start using the test-first approach. In general mixed teams (Qt/C++ and QML/JS) are very successfull when they minimize the amount of JS in the frontend as the domain logic and do the heavy lifting in Qt C++ in the backend. The backend should then be rigorous unit tested so that the frontend developers can trust the code and focus on all these little user interface requirements.


Nota

In general: backend developers are functional driven and frontend developers are user story driven.




Browser/HTML vs QtQuick/QML

The browser is the runtime to render HTML and execute the Javascript associated with the HTML. Nowadays modern web applications contain much more JavaScript then HTML. The Javascript inside the browser is a standard ECMAScript environment with some browser additions. A typical JS environment inside the browser knows the window object to access the browser window. There are also the basic DOM selectors which are used by jQuery to provide the CSS selectors. Additional there is a setTimeout function to call a function after a certain time. Besides these the environment is a standard JavaScript environment similar to QML/JS.

What is also different is where JS can appear inside HTML and QML. In HTML you can only add JS on event handlers (e.g. page loaded, mouse pressed). For example your JS initializes normally on page load, which is comparable to Component.onCompleted in QML. For example you can not use JS for property bindings (at least not directly, AngularJS enhances the DOM tree to allow these, but this is far away from standard HTML).

So in QML JS is much more a first-class citizen and much deeper integrated into the QML render tree. Which makes the syntax much more readable. Besides this people which have developed HTML/JS applications will feel at home inside QML/JS.




The Language

This chapter will not give you a general introducton to JavaScript. There are other books out there for for a general introduction to JavaScript, please visit this great side on Mozilla Developer Network [https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript].

On the surface JavaScript is a very common language and does not differ a lot from other languages:

function countDown() {
  for(var i=0; i<10; i++) {
    console.log('index: ' + i)
  }
}

function countDown2() {
  var i=10;
  while( i>0 ) {
    i--;
  }
}





But be warned JS has function scope and not block scope as in C++ (see Functions and function scope [https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Functions_and_function_scope]).

The statements if ... else, break, continue also work as expected. The switch case can also compare other types and not just integer values:

function getAge(name) {
  // switch over a string
  switch(name) {
  case "father":
    return 58;
  case "mother":
    return 56;
  }
  return unknown;
}





JS knows several values which can be false, e.g. false, 0, "", undefined, null). For example a function returns by default undefined. To test for false use the === identity operator. The == equality operator will do type conversion to test for equality. If possible use the faster and better === strict equality operator which will test for identity (see Comparison operators [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators].

Under the hood javascript has its own ways of doing things. For example arrays:

function doIt() {
  var a = [] // empty arrays
  a.push(10) // addend number on arrays
  a.push("Monkey") // append string on arrays
  console.log(a.length) // prints 2
  a[0] // returns 10
  a[1] // returns Monkey
  a[2] // returns undefined
  a[99] = "String" // a valid assignment
  console.log(a.length) // prints 100
  a[98] // contains the value undefined
}





Also for people coming from C++ or Java which are used to a OO language JS just works different. JS is not purely an OO language it is a so called prototype based language. Each object has a prototype object. An object is created based on his prototype object. Please read more about this in the book Javascript the Good Parts by Douglas Crockford [http://javascript.crockford.com] or watch the video below.


To test some small JS snippets you can use the online JS Console [http://jsconsole.com] or just build a little piece of QML code:

import QtQuick 2.5

Item {
  function runJS() {
    console.log("Your JS code goes here");
  }
  Component.onCompleted: {
    runJS();
  }
}








JS Objects

While working with JS there are some objects and methods which are more frequently used. This is a small collection of them.


	Math.floor(v), Math.ceil(v), Math.round(v) - largest, smallest, rounded integer from float

	Math.random() - create a random number between 0 and 1

	Object.keys(o) - get keys from object (including QObject)

	JSON.parse(s), JSON.stringify(o) - conversion between JS object and JSON string

	Number.toFixed(p) - fixed precision float

	Date - Date manipulation



You can find them also at: JavaScript reference [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference]

Here some small and limited examples how to use JS with QML. They should give you an idea how you can use JS inside QML

Print all keys from QML Item

Item {
  id: root
  Component.onCompleted: {
    var keys = Object.keys(root);
    for(var i=0; i<keys.length; i++) {
      var key = keys[i];
      // prints all properties, signals, functions from object
      console.log(key + ' : ' + root[key]);
    }
  }
}





Parse an object to a JSON string and back

Item {
  property var obj: {
    key: 'value'
  }

  Component.onCompleted: {
    var data = JSON.stringify(obj);
    console.log(data);
    var obj = JSON.parse(data);
    console.log(obj.key); // > 'value'
  }
}





Current Date

Item {
  Timer {
    id: timeUpdater
    interval: 100
    running: true
    repeat: true
    onTriggered: {
      var d = new Date();
      console.log(d.getSeconds());
    }
  }
}





Call a function by name

Item {
  id: root

  function doIt() {
    console.log("doIt()")
  }

  Component.onCompleted: {
    // Call using function execution
    root["doIt"]();
    var fn = root["doIt"];
    // Call using JS call method (could pass in a custom this object and arguments)
    fn.call()
  }
}








Creating a JS Console

As a little example we will create a JS console. We need an input field where the user can enter his JS expressions and ideally there should be a list of output results. As this should more look like a desktop application we use the QtQuick Controls module.


Nota

A JS console inside your next project can be really beneficial for testing. Enhanced with a Quake-Terminal effect it is also good to impress customers. To use it wisely you need to control the scope the JS console evaluates in, e.g. the current visible screen, the main data model, a singleton core object or all together.




[image: ../../_images/jsconsole.png]


We use Qt Creator to create a Qt Quick UI project using QtQuick controls. We call the project JSConsole. After the wizard has finished we have already a basic structure for the application with an application window and a menu to exit the application.

For the input we use a TextField and a Button to send the input for evaluation. The result of the expression evaluation is displayed using a ListView with a ListModel as the model and two labels to display the expression and the evaluated result.

// part of JSConsole.qml
ApplicationWindow {
  id: root

  ...

  ColumnLayout {
      anchors.fill: parent
      anchors.margins: 9
      RowLayout {
          Layout.fillWidth: true
          TextField {
              id: input
              Layout.fillWidth: true
              focus: true
              onAccepted: {
                  // call our evaluation function on root
                  root.jsCall(input.text)
              }
          }
          Button {
              text: qsTr("Send")
              onClicked: {
                  // call our evaluation function on root
                  root.jsCall(input.text)
              }
          }
      }
      Item {
          Layout.fillWidth: true
          Layout.fillHeight: true
          Rectangle {
              anchors.fill: parent
              color: '#333'
              border.color: Qt.darker(color)
              opacity: 0.2
              radius: 2
          }

          ScrollView {
              id: scrollView
              anchors.fill: parent
              anchors.margins: 9
              ListView {
                  id: resultView
                  model: ListModel {
                      id: outputModel
                  }
                  delegate: ColumnLayout {
                      width: ListView.view.width
                      Label {
                          Layout.fillWidth: true
                          color: 'green'
                          text: "> " + model.expression
                      }
                      Label {
                          Layout.fillWidth: true
                          color: 'blue'
                          text: "" + model.result
                      }
                      Rectangle {
                          height: 1
                          Layout.fillWidth: true
                          color: '#333'
                          opacity: 0.2
                      }
                  }
              }
          }
      }
  }
}





The evaluation function jsCall does the evaluation not by itself this has been moved to a JS module (jsconsole.js) for clearer separation.

// part of JSConsole.qml

import "jsconsole.js" as Util

...

ApplicationWindow {
  id: root

  ...

  function jsCall(exp) {
      var data = Util.call(exp);
      // insert the result at the beginning of the list
      outputModel.insert(0, data)
  }
}





For safety we do not use the eval function from JS as this would allow the user to modify the local scope. We use the Function constructor to create a JS function on runtime and pass in our scope as this variable. As the function is created every time it does not act as a closure and stores its own scope, we need to use this.a = 10 to store the value inside the this scope of the function. The this scope is set by the script to the scope variable.

// jsconsole.js
.pragma library

var scope = {
  // our custom scope injected into our function evaluation
}

function call(msg) {
    var exp = msg.toString();
    console.log(exp)
    var data = {
        expression : msg
    }
    try {
        var fun = new Function('return (' + exp + ');');
        data.result = JSON.stringify(fun.call(scope), null, 2)
        console.log('scope: ' + JSON.stringify(scope, null, 2) + 'result: ' + result)
    } catch(e) {
        console.log(e.toString())
        data.error = e.toString();
    }
    return data;
}





The data return from the call function is a JS object with a result, expression and error property: data: { expression: {}, result: {}, error: {} }. We can use this JS object directly inside the ListModel and access it then from the delegate, e.g. model.expression gives us the input expression. For the simplicity of the example we ignore the error result.
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Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



Qt is a C++ toolkit with an extension for QML and Javascript. There exists many language bindings for Qt, but as Qt is developed in C++, the spirit of C++ can be found throughout the classes. In this section, we will look at Qt from a C++ perspective to build a better understanding how to extend QML with native plugins developed using C++. Through C++, it is possible to extend and control the execution environment provided to QML.

This chapter will, just as Qt, require the reader to have some basic knowledge of C++. Qt does not rely on advanced C++ features, and I generally consider the Qt style of C++ to be very readable, so do not worry if you feel that your C++ knowledge is shaky.

Approaching Qt from a C++ direction, you will find that Qt enriches C++ with a number of modern language features enabled through making introspection data available. This is made possible through the use of the QObject base class. Introspection data, or meta data, maintains information of the classes at run-time, something that ordinary C++ does not do. This makes it possible to dynamically probe objects for information about such details as their properties and available methods.

Qt uses this meta information to enable a very loosely bound callback concept using signals and slots. Each signal can be connected to any number of slots or even other signals. When a signal is emitted from an object instance, the connected slots are invoked. As the signal emitting object does not need to know anything about the object owning the slot and vise versa, this mechanism is used to create very reusable components with very few inter-component dependencies.

The introspection features are also used to create dynamic language bindings, making it possible to expose a C++ object instance to QML and making C++ functions callable from Javascript. Other bindings for Qt C++ exist and besides the standard Javascript binding a popular one is the Python binding called PyQt [http://www.riverbankcomputing.co.uk/software/pyqt/intro].

In addition to this central concept, Qt makes it possible to develop cross platform applications using C++. Qt C++ provides a platform abstraction on the different operating systems, which allows the developer to concentrate on the task at hand and not the details of how you open a file on different operating systems. This means you can re-compile the same source code for Windows, OS X and Linux and Qt takes care of the different OS ways of handling certain things. The end result are natively built applications with the look and feel of the target platform. As the mobile is the new desktop, newer Qt versions can also target a number of mobile platforms using the same source code, e.g. iOS, Android, Jolla, BlackBerry, Ubuntu Phone, Tizen.

When it comes to re-use, not only can source code be re-used but developer skills are also reusable. A team knowing Qt can reach out to far more platforms then a team just focusing on a single platform specific technology and as Qt is so flexible the team can create different system components using the same technology.
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For all platform, Qt offers a set of basic types, e.g. strings with full unicode support, lists, vectors, buffers. It also provides a common abstraction to the target platform’s main loop, and cross platform threading  and networking support. The general philosophy is that for an application developer Qt comes with all required functionality included. For domain specific tasks such as to interface to your native libraries Qt comes with several helper classes to make this easier.


A Boilerplate Application

The best way to understand Qt is to start from a small demonstration application. This application creates a simple "Hello World!" string and writes it into a file using unicode characters.

#include <QCoreApplication>
#include <QString>
#include <QFile>
#include <QDir>
#include <QTextStream>
#include <QDebug>


int main(int argc, char *argv[])
{
    QCoreApplication app(argc, argv);

    // prepare the message
    QString message("Hello World!");

    // prepare a file in the users home directory named out.txt
    QFile file(QDir::home().absoluteFilePath("out.txt"));
    // try to open the file in write mode
    if(!file.open(QIODevice::WriteOnly)) {
        qWarning() << "Can not open file with write access";
        return -1;
    }
    // as we handle text we need to use proper text codecs
    QTextStream stream(&file);
    // write message to file via the text stream
    stream << message;

    // do not start the eventloop as this would wait for external IO
    // app.exec();

    // no need to close file, closes automatically when scope ends
    return 0;
}





The simple example demonstrates the use of file access and the correct way of writing text into a file using text codecs via the text stream. For binary data there is a cross platform binary stream called QDataStream. The different classes we use are included using their class name. Another possibility would be to use a module and class name e.g. #include <QtCore/QFile>. For the lazy there is also the possibility to include a whole module using #include <QtCore>. E.g. in QtCore you have the most common classes used for an application, which are not UI dependent. Have a look at the QtCore class list [http://doc.qt.io/qt-5/qtcore-module.html] or the QtCore overview [http://doc.qt.io/qt-5/qtcore-index.html].

You build the application using qmake and make. QMake reads a project file and generates a Makefile which then can be called using make. The project file is platform independent and qmake has some rules to apply the platform specific settings to the generated make file. The project can also contain platform scopes for platform specific rules, which are required in some specific cases. Here is an example of a simple project file.

# build an application
TEMPLATE = app

# use the core module and do not use the gui module
QT       += core
QT       -= gui

# name of the executable
TARGET = CoreApp

# allow console output
CONFIG   += console

# for mac remove the application bundling
macx {
    CONFIG   -= app_bundle
}

# sources to be build
SOURCES += main.cpp





We will not go into depth into this topic. Just remember Qt uses project files for projects and qmake generates the platform specific make files from these project files.

The simple code example above just writes the text and exits the application. For a command line tool this is good enough. For a user interface you would need an event loop which waits for user input and and somehow schedules re-draw operations. So here follows the same example now uses a desktop button to trigger the writing.

Our main.cpp suprisingly got smaller. We moved code into an own class to be able to use signal/slots for the user input, e.g. the button click. The signal/slot mechanism normally needs an object instance as you will see shortly.

#include <QtCore>
#include <QtGui>
#include <QtWidgets>
#include "mainwindow.h"


int main(int argc, char** argv)
{
    QApplication app(argc, argv);

    MainWindow win;
    win.resize(320, 240);
    win.setVisible(true);

    return app.exec();
}





In the main function we simply create the application object and start the event loop using exec(). For now the application sits in the event loop and waits for user input.

int main(int argc, char** argv)
{
    QApplication app(argc, argv); // init application

    // create the ui

    return app.exec(); // execute event loop
}





Qt offers several UI technologies. For this example we use the Desktop Widgets user interface library using pure Qt C++. We create a main window which will host a push button to trigger the functionality and also the main window will host our core functionality which we know from the previous example.
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The main window itself is a widget. It becomes a top level window as it does not have any parent. This comes from how Qt sees a user interface as a tree of ui elements. In this case the main window is the root element, thus becomes a window, while the push button a child of the main window and becomes a widget inside the window.

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QtWidgets>

class MainWindow : public QMainWindow
{
public:
    MainWindow(QWidget* parent=0);
    ~MainWindow();
public slots:
    void storeContent();
private:
    QPushButton *m_button;
};

#endif // MAINWINDOW_H





Additionally we define a public slot called storeContent() which shall be called when the button is clicked. A slot is a C++ method which is registered with the Qt meta object system and can be dynamically called.

#include "mainwindow.h"

MainWindow::MainWindow(QWidget *parent)
    : QMainWindow(parent)
{
    m_button = new QPushButton("Store Content", this);

    setCentralWidget(m_button);
    connect(m_button, &QPushButton::clicked, this, &MainWindow::storeContent);
}

MainWindow::~MainWindow()
{

}

void MainWindow::storeContent()
{
    qDebug() << "... store content";
    QString message("Hello World!");
    QFile file(QDir::home().absoluteFilePath("out.txt"));
    if(!file.open(QIODevice::WriteOnly)) {
        qWarning() << "Can not open file with write access";
        return;
    }
    QTextStream stream(&file);
    stream << message;
}





In the main window we first create the push button and then register the signal clicked() with the slot storeContent() using the connect method. Every time the signal clicked is emitted the slot storeContent() is called. As simple as this, objects communicate via signal and slots with loose coupling.




The QObject

As described in the introduction, the QObject is what enables Qt’s introspection. It is the base class of almost all classes in Qt. Exceptions are value types such as QColor, QString and QList.

A Qt object is a standard C++ object, but with more abilities. These can be divided into two groups: introspection and memory management. The first means that a Qt object is aware of its class name, its relationship to other classes, as well as its methods and properties. The memory management concept means that each Qt object can be the parent of child objects. The parent owns the children, and when the parent is destroyed, it is responsible for destroying its children.

The best way of understanding how the QObject abilities affect a class is to take a standard C++ class and Qt enable it. The class shown below represents an ordinary such class.

The person class is a data class with a name and gender properties. The person class uses Qt’s object system to add meta information to the c++ class. It allows users of a person object to connect to the slots and get notified when the properties get changed.

class Person : public QObject
{
    Q_OBJECT // enabled meta object abilities

    // property declarations required for QML
    Q_PROPERTY(QString name READ name WRITE setName NOTIFY nameChanged)
    Q_PROPERTY(Gender gender READ gender WRITE setGender NOTIFY genderChanged)

    // enables enum introspections
    Q_ENUMS(Gender)

public:
    // standard Qt constructor with parent for memory management
    Person(QObject *parent = 0);

    enum Gender { Unknown, Male, Female, Other };

    QString name() const;
    Gender gender() const;

public slots: // slots can be connected to signals
    void setName(const QString &);
    void setGender(Gender);

signals: // signals can be emitted
    void nameChanged(const QString &name);
    void genderChanged(Gender gender);

private:
    // data members
    QString m_name;
    Gender m_gender;
};





The constructor passes the parent to the super class and initialize the members. Qt’s value classes are automatically initialized. In this case QString will initialize to a null string (QString::isNull()) and the gender member will explicitly initialize to the unknown gender.

Person::Person(QObject *parent)
    : QObject(parent)
    , m_gender(Person::Unknown)
{
}





The getter function is named after the property and is normally a simple const function. The setter emits the changed signal when the property really has changed. For this we insert a guard to compare the current value with the new value. And only when the value differs we assign it to the member variable and emit the changed signal.

QString Person::name() const
{
    return m_name;
}

void Person::setName(const QString &name)
{
    if (m_name != name) // guard
    {
        m_name = name;
        emit nameChanged(m_name);
    }
}





Having a class derived from QObject, we have gained more meta object abilities we can explore using the metaObject() method. For example retrieving the class name from the object.

Person* person = new Person();
person->metaObject()->className(); // "Person"
Person::staticMetaObject.className(); // "Person"





There are many more features which can be accessed by the QObject base class and the meta object. Please check out the QMetaObject documentation.




Build Systems

Building software reliably on different platforms can be a complex task. You will encounter different environments with different compilers, paths, and library variations. The purpose of Qt is to shield the application developer from these cross platform issues. For this Qt introduced the qmake build file generator. qmake operates on a project file with the ending .pro. This project file contains instructions about the application and the sources to be used. Running qmake on this project file will generate a Makefile for you on unix and mac and even under windows if the mingw compiler toolchain is being used. Otherwise it may create a visual studio project or an xcode project.

A typical build flow in Qt under unix would be:

$ edit myproject.pro
$ qmake // generates Makefile
$ make





Qt allows you also to use shadow builds. A shadow build is a build outside of your source code location. Assume we have a myproject folder with a myproject.pro file. The flow would be like this:

$ mkdir build
$ cd build
$ qmake ../myproject/myproject.pro





We create a build folder and then call qmake from inside the build folder with the location of our project folder. This will setup the make file in a way that all build artifacts are stored under the build folder instead of inside our source code folder. This allows us to create builds for different qt versions and build configurations at the same time and also it does not clutter our soruce code folder which is always a good thing.

When you are using Qt Creator it does these things behind the scenes for you and you do not have to worry about these steps usually. For larger projects and for adeeper understanding of the flow, it is recommended that you learn to build your qt project from the command line.


QMake

QMake is the tool which reads your project file and generates the build file. A project file is a simplified write down of your project configuration, external dependencies, and your source files. The simplest project file is probably this:

// myproject.pro

SOURCES += main.cpp





Here we build an exectuable application which will have the name myproject based on the project file name. The build will only contain the main.cpp source file. And by default we will use the QtCore and QtGui module for this project. If our project were a QML application we would need to add the QtQuick and QtQml module to the list:

// myproject.pro

QT += qml quick

SOURCES += main.cpp





Now the build file knows to link against the QtQml and QtQuick Qt modules. QMake use the concept of =, += and -= to assign, add, remove elements from a list of options, respectively. For a pure console build without UI dependencies you would remove the QtGui module:

// myproject.pro

QT -= gui

SOURCES += main.cpp





When you want to build a library instead of an application, you need to change the build template:

// myproject.pro
TEMPLATE = lib

QT -= gui

HEADERS += utils.h
SOURCES += utils.cpp





Now the project will build as a library without UI dependencies and used the utils.h header and the utils.cpp source file. The format of the library will depend on the OS you are building the project.

Often you wil have more complicated setups and need to build a set of projects. For this, qmake offers the subdirs template. Assume we would have a mylib and a myapp project. Then our setup could be like this:

my.pro
mylib/mylib.pro
mylib/utils.h
mylib/utils.cpp
myapp/myapp.pro
myapp/main.cpp





We know already how the mylib.pro and myapp.pro would look like. The my.pro as the overarching project file would look like this:

// my.pro
TEMPLATE = subdirs

subdirs = mylib \
    myapp

myapp.depends = mylib





This declares a project with two subprojects: mylib and myapp, where myapp depends on mylib. When you run qmake on this project file it will generate file a build file for each project in a corresponding folder. When you run the make file for my.pro, all subprojects are also built.

Sometimes you need to do one thing on one platform and another thing on other platforms based on your configuration. For this qmake introduces the concept of scopes. A scope is applied when a configuration option is set to true.

For example to use a unix specific utils implementation you could use:

unix {
    SOURCES += utils_unix.cpp
} else {
    SOURCES += utils.cpp
}





What it says is if the CONFIG variable contains a unix option then apply this scope otherwise use the else path. A typical one is to remove the application bundling under mac:

macx {
    CONFIG -= app_bundle
}





This will create your application as a plain executable under mac and not as a .app folder which is used for application installation.

QMake based projects are normally the number one choice when you start programming Qt applications. There are also other options out there. All have their benefits and drawbacks. We will shortly discuss these other options next.

References


	QMake Manual [http://doc.qt.io/qt-5//qmake-manual.html] - Table of contents of the qmake manual

	QMake Language [http://doc.qt.io/qt-5//qmake-language.html] - Value assignment, scopes and so like

	QMake Variables [http://doc.qt.io/qt-5//qmake-variable-reference.html] - Variables like TEMPLATE, CONFIG, QT are explained here






CMake

CMake is a tool create by Kitware. Kitware is very well known for their 3D visualitation software VTK and also CMake, the cross platform makefile generator. It uses a series of CMakeLists.txt files to generate platform specific make files. CMake is used by the KDE project and as such has a special relationship with the Qt community.

The CMakeLists.txt is the file used to store the project configuration. For a simple hello world using QtCore the project file would look like this:

// ensure cmake version is at least 3.0
cmake_minimum_required(VERSION 3.0)
// adds the source and build location to the include path
set(CMAKE_INCLUDE_CURRENT_DIR ON)
// Qt's MOC tool shall be automatically invoked
set(CMAKE_AUTOMOC ON)
// using the Qt5Core module
find_package(Qt5Core)
// create excutable helloworld using main.cpp
add_executable(helloworld main.cpp)
// helloworld links against Qt5Core
target_link_libraries(helloworld Qt5::Core)





This will build a helloworld executable using main.cpp and linked agains the external Qt5Core library. The build file can be modified to be more generic:

// sets the PROJECT_NAME variable
project(helloworld)
cmake_minimum_required(VERSION 3.0)
set(CMAKE_INCLUDE_CURRENT_DIR ON)
set(CMAKE_AUTOMOC ON)
find_package(Qt5Core)

// creates a SRC_LIST variable with main.cpp as single entry
set(SRC_LIST main.cpp)
// add an executable based on the project name and source list
add_executable(${PROJECT_NAME} ${SRC_LIST})
// links Qt5Core to the project executable
target_link_libraries(${PROJECT_NAME} Qt5::Core)





You can see that CMake is quite powerful. It takes some time to get used to the syntax. In general, it is said that CMake is better suited for large and complex projects.

References


	CMake Help [http://www.cmake.org/documentation/] - available online but also as QtHelp format

	Running CMake [http://www.cmake.org/runningcmake/]

	KDE CMake Tutorial [https://techbase.kde.org/Development/Tutorials/CMake]

	CMake Book [http://www.kitware.com/products/books/CMakeBook.html]

	CMake and Qt [http://www.cmake.org/cmake/help/v3.0/manual/cmake-qt.7.html]








Common Qt Classes

The QObject class forms the foundations of Qt, but there are many more classes in the framework. Before we continue looking at QML and how to extend it, we will look at some basic Qt classes that are useful to know about.

The code examples shown in this section are written using the Qt Test library. It offers a great way to explore the Qt API and store it for later reference. QVERIFY, QCOMPARE are functions provided by the test library to assert a certain condition. We will use {} scopes to avoid name collisions. So do not get confused.


QString

In general, text handling in Qt is unicode based. For this you use the QString class. It comes with a variety of great functions which you would expect from a modern framework. For 8-bit data you would use normally the QByteArray class and for ASCII identifiers the QLatin1String to preserve memory. For a list of strings you can use a QList<QString> or simply the QStringList class (which is derived from QList<QString>).

Here are some examples of how to use the QString class. QString can be created on the stack but it stores its data on the heap. Also when assigning one string to another, the data will not be copied - only a reference to the data. So this is really cheap and lets the developer concentrate on the code and not on the memory handling. QString uses reference counters to know when the data can be safely deleted. This feature is called Implicit Sharing [http://doc.qt.io/qt-5//implicit-sharing.html] and it is used in many Qt classes.

    QString data("A,B,C,D"); // create a simple string
    // split it into parts
    QStringList list = data.split(",");
    // create a new string out of the parts
    QString out = list.join(",");
    // verify both are the same
    QVERIFY(data == out);
    // change the first character to upper case
    QVERIFY(QString("A") == out[0].toUpper());





Here we will show how to convert a number to a string and back. There are also conversion functions for float or double and other types. Just look for the function in the Qt documentation used here and you will find the others.

    // create some variables
    int v = 10;
    int base = 10;
    // convert an int to a string
    QString a = QString::number(v, base);
    // and back using and sets ok to true on success
    bool ok(false);
    int v2 = a.toInt(&ok, base);
    // verify our results
    QVERIFY(ok == true);
    QVERIFY(v = v2);





Often in text you need to have parameterized text. One option could be to use QString("Hello" + name) but a more flexible method is the arg marker approach.  It preserves the order also during translation when the order might change.

    // create a name
    QString name("Joe");
    // get the day of the week as string
    QString weekday = QDate::currentDate().toString("dddd");
    // format a text using paramters (%1, %2)
    QString hello = QString("Hello %1. Today is %2.").arg(name).arg(weekday);
    // This worked on Monday. Promise!
    if(Qt::Monday == QDate::currentDate().dayOfWeek()) {
        QCOMPARE(QString("Hello Joe. Today is Monday."), hello);
    } else {
        QVERIFY(QString("Hello Joe. Today is Monday.") !=  hello);
    }





Sometimes you want to use unicode characters directly in you code. For this you need to remember how to mark them for the QChar and QString classes.

    // Create a unicode character using the unicode for smile :-)
    QChar smile(0x263A);
    // you should see a :-) on you console
    qDebug() << smile;
    // Use a unicode in a string
    QChar smile2 = QString("\u263A").at(0);
    QVERIFY(smile == smile2);
    // Create 12 smiles in a vector
    QVector<QChar> smilies(12);
    smilies.fill(smile);
    // Can you see the smiles
    qDebug() << smilies;





This gives you some examples of how to easily treat unicode aware text in Qt. For non-unicode the QByteArray class also has many helper functions for conversion. Please read the Qt documentation for QString as it contains tons of good examples.




Sequential Containers

A list, queue, vector or linked-list is a sequential container. The mostly used sequential container is the QList class. It is a template based class and needs to be initialized with a type. It is also implicit shared and stores the data internally on the heap. All container classes should be created on the stack. Normally you never want to use new QList<T>(), which means never use new with a container.

The QList is as versatile as the QString class and offers a great API to explore your data. Below is a small example how to use and iterate over a list using some new C++ 11 features.

    // Create a simple list of ints using the new C++11 initialization
    // for this you need to add "CONFIG += c++11" to your pro file.
    QList<int> list{1,2};

    // append another int
    list << 3;

    // We are using scopes to avoid variable name clashes

    { // iterate through list using Qt for each
        int sum(0);
        foreach (int v, list) {
            sum += v;
        }
        QVERIFY(sum == 6);
    }
    { // iterate through list using C++ 11 range based loop
        int sum = 0;
        for(int v : list) {
            sum+= v;
        }
        QVERIFY(sum == 6);
    }

    { // iterate through list using JAVA style iterators
        int sum = 0;
        QListIterator<int> i(list);

        while (i.hasNext()) {
            sum += i.next();
        }
        QVERIFY(sum == 6);
    }

    { // iterate through list using STL style iterator
        int sum = 0;
        QList<int>::iterator i;
        for (i = list.begin(); i != list.end(); ++i) {
            sum += *i;
        }
        QVERIFY(sum == 6);
    }


    // using std::sort with mutable iterator using C++11
    // list will be sorted in descending order
    std::sort(list.begin(), list.end(), [](int a, int b) { return a > b; });
    QVERIFY(list == QList<int>({3,2,1}));


    int value = 3;
    { // using std::find with const iterator
        QList<int>::const_iterator result = std::find(list.constBegin(), list.constEnd(), value);
        QVERIFY(*result == value);
    }

    { // using std::find using C++ lambda and C++ 11 auto variable
        auto result = std::find_if(list.constBegin(), list.constBegin(), [value](int v) { return v == value; });
        QVERIFY(*result == value);
    }








Associative Containers

A map, a dictionary, or a set are examples of associative containers. They store a value using a key. They are known for their fast lookup. We demonstrate the use of the most used associative container the QHash also demonstrating some new C++ 11 features.

    QHash<QString, int> hash({{"b",2},{"c",3},{"a",1}});
    qDebug() << hash.keys(); // a,b,c - unordered
    qDebug() << hash.values(); // 1,2,3 - unordered but same as order as keys

    QVERIFY(hash["a"] == 1);
    QVERIFY(hash.value("a") == 1);
    QVERIFY(hash.contains("c") == true);

    { // JAVA iterator
        int sum =0;
        QHashIterator<QString, int> i(hash);
        while (i.hasNext()) {
            i.next();
            sum+= i.value();
            qDebug() << i.key() << " = " << i.value();
        }
        QVERIFY(sum == 6);
    }

    { // STL iterator
        int sum = 0;
        QHash<QString, int>::const_iterator i = hash.constBegin();
        while (i != hash.constEnd()) {
            sum += i.value();
            qDebug() << i.key() << " = " << i.value();
            i++;
        }
        QVERIFY(sum == 6);
    }

    hash.insert("d", 4);
    QVERIFY(hash.contains("d") == true);
    hash.remove("d");
    QVERIFY(hash.contains("d") == false);

    { // hash find not successfull
        QHash<QString, int>::const_iterator i = hash.find("e");
        QVERIFY(i == hash.end());
    }

    { // hash find successfull
        QHash<QString, int>::const_iterator i = hash.find("c");
        while (i != hash.end()) {
            qDebug() << i.value() << " = " << i.key();
            i++;
        }
    }

    // QMap
    QMap<QString, int> map({{"b",2},{"c",2},{"a",1}});
    qDebug() << map.keys(); // a,b,c - ordered ascending

    QVERIFY(map["a"] == 1);
    QVERIFY(map.value("a") == 1);
    QVERIFY(map.contains("c") == true);

    // JAVA and STL iterator work same as QHash








File IO

It is often required to read and write from files. QFile is actually a QObject but in most cases it is created on the stack. QFile contains signals to inform the user when data can be read. This allows reading chunks of data asynchronously until the whole file is read. For convenience it also allows reading data in blocking mode. This should only be used for smaller amounts of data and not large files. Luckily we only use small amounts of data in these examples.

Besides reading raw data from a file into a QByteArray you can also read data types using the QDataStream and unicode string using the QTextStream. We will show you how.

    QStringList data({"a", "b", "c"});
    { // write binary files
        QFile file("out.bin");
        if(file.open(QIODevice::WriteOnly)) {
            QDataStream stream(&file);
            stream << data;
        }
    }
    { // read binary file
        QFile file("out.bin");
        if(file.open(QIODevice::ReadOnly)) {
            QDataStream stream(&file);
            QStringList data2;
            stream >> data2;
            QCOMPARE(data, data2);
        }
    }
    { // write text file
        QFile file("out.txt");
        if(file.open(QIODevice::WriteOnly)) {
            QTextStream stream(&file);
            QString sdata = data.join(",");
            stream << sdata;
        }
    }
    { // read text file
        QFile file("out.txt");
        if(file.open(QIODevice::ReadOnly)) {
            QTextStream stream(&file);
            QStringList data2;
            QString sdata;
            stream >> sdata;
            data2 = sdata.split(",");
            QCOMPARE(data, data2);
        }
    }








More Classes

Qt is a rich application framework. As such it has thousands of classes. It takes some time to get used to all of these classes and how to use them. Luckily Qt has a very good documentation with many useful examples includes. Most of the time you search for a class and the most common use cases are already provided as snippets. Which means you just copy and adapt these snippets. Also Qt’s examples in the Qt source code are a great help. Make sure you have them available and searchable to make your life more productive. Do not waste time. The Qt community is always helpful. When you ask, it is very helpful to ask exact questions and provide a simple example which displays your needs. This will drastically improve the response time of others. So invest a litte bit of time to make the life of others who want to help you easier :-).

Here some classes whose documentation the author thinks are a must read: QObject [http://doc.qt.io/qt-5//qobject.html], QString [http://doc.qt.io/qt-5//qstring.html], QByteArray [http://doc.qt.io/qt-5//qbytearray.html], QFile [http://doc.qt.io/qt-5//qfile.html], QDir [http://doc.qt.io/qt-5//qdir.html], QFileInfo [http://doc.qt.io/qt-5//qfileinfo.html], QIODevice [http://doc.qt.io/qt-5//qiodevice.html], QTextStream [http://doc.qt.io/qt-5//qtextstream.html], QDataStream [http://doc.qt.io/qt-5//qdatastream.html], QDebug [http://doc.qt.io/qt-5//qdebug.html], QLoggingCategory [http://doc.qt.io/qt-5//qloggingcategory.html], QTcpServer [http://doc.qt.io/qt-5//qtcpserver.html], QTcpSocket [http://doc.qt.io/qt-5//qtcpsocket.html], QNetworkRequest [http://doc.qt.io/qt-5//qnetworkrequest.html], QNetworkReply [http://doc.qt.io/qt-5//qnetworkreply.html], QAbstractItemModel [http://doc.qt.io/qt-5//qabstractitemmodel.html], QRegExp [http://doc.qt.io/qt-5//qregexp.html], QList [http://doc.qt.io/qt-5//qlist.html], QHash [http://doc.qt.io/qt-5//qhash.html], QThread [http://doc.qt.io/qt-5//qthread.html], QProcess [http://doc.qt.io/qt-5//qprocess.html], QJsonDocument [http://doc.qt.io/qt-5//qjsondocument.html], QJSValue [http://doc.qt.io/qt-5//qjsvalue.html].

That should be enough for the beginning.






Models in C++

Models in QML serve the purpose of providing data to ListViews, PathViews and other views which take a model and create an instance of a delegate for each entry in the model. The view is smart enough to only create these instances which are visible or in the cache range. This makes it possible to have large models with tens of throusands of entries but still have a very slick user interface. The delegate acts like a template to be rendered with the model entries data. So in summary: a view renders entries from the model using a delegate as a template. The model is a data provider to views.

When you do not want to use C++ you can also define models in pure QML. You have several ways to provide a model to the view. For handling of data coming from C++ or large amount of data  the C++ model is more suitable than these pure QML approaches. But often you only need a few entries then these QML models are well suited.

ListView {
    // using a integer as model
    model: 5
    delegate: Text { text: 'index: ' + index }
}

ListView {
    // using a JS array as model
    model: ['A', 'B', 'C', 'D', 'E']
    delegate: Text { 'Char['+ index +']: ' + modelData }
}

ListView {
    // using a dynamic QML ListModel as model
    model: ListModel {
        ListElement { char: 'A' }
        ListElement { char: 'B' }
        ListElement { char: 'C' }
        ListElement { char: 'D' }
        ListElement { char: 'E' }
    }
    delegate: Text { 'Char['+ index +']: ' + model.char }
}





The QML views knows how to handle these different models. For models coming from the C++ world the view expects a specific protocol to be followed. This protocol is defined in an API (QAbstractItemModel) together with documentation for the dynamic behavior. The API was developed for the desktop widget world and is flexible enough to act as a base for trees, or multi column tables as well as lists. In QML, we almost only use the list version of the API (QAbstractListModel). The API contains some mandatory functions to be implemented and some are optional. The optional parts mostly handle the dynamic use case of adding or removing of data.


A simple model

A typical QML C++ model derives from QAbstractListModel and implements at least the data and rowCount function. In this example we will use a series of SVG color names provided by the QColor class and display them using our model. The data is stored into a QList<QString> data container.

Our DataEntryModel is derived form QAbstractListModel and implementats the mandatory functions. We can ignore the parent in rowCount as this is only used in a tree model. The QModelIndex class provides the row and column information for the cell, for which the view wants to retrieve data. The view is pulling information from the model on a row/column and role base. The QAbstractListModel is defined in QtCore but QColor in QtGui. That is why we have the additional QtGui dependency. For QML applications it is okay to depend on QtGui but it should normally not depend on QtWidgets.

#ifndef DATAENTRYMODEL_H
#define DATAENTRYMODEL_H

#include <QtCore>
#include <QtGui>

class DataEntryModel : public QAbstractListModel
{
    Q_OBJECT
public:
    explicit DataEntryModel(QObject *parent = 0);
    ~DataEntryModel();

public: // QAbstractItemModel interface
    virtual int rowCount(const QModelIndex &parent) const;
    virtual QVariant data(const QModelIndex &index, int role) const;
private:
    QList<QString> m_data;
};

#endif // DATAENTRYMODEL_H





On the implementation side the most complex part is the data function. We first need to make a range check. And then we check for the display role. The Qt::DisplayRole is the default text role a view will ask for. There is a small set of default roles defined in Qt which can be used, but normally a model will define its own roles for clarity. All calls which do not contain the display role are ignored at the moment and the default value QVariant() is returned.

#include "dataentrymodel.h"

DataEntryModel::DataEntryModel(QObject *parent)
    : QAbstractListModel(parent)
{
    // initialize our data (QList<QString>) with a list of color names
    m_data = QColor::colorNames();
}

DataEntryModel::~DataEntryModel()
{
}

int DataEntryModel::rowCount(const QModelIndex &parent) const
{
    Q_UNUSED(parent);
    // return our data count
    return m_data.count();
}

QVariant DataEntryModel::data(const QModelIndex &index, int role) const
{
    // the index returns the requested row and column information.
    // we ignore the column and only use the row information
    int row = index.row();

    // boundary check for the row
    if(row < 0 || row >= m_data.count()) {
        return QVariant();
    }

    // A model can return data for different roles.
    // The default role is the display role.
    // it can be accesses in QML with "model.display"
    switch(role) {
        case Qt::DisplayRole:
            // Return the color name for the particular row
            // Qt automatically converts it to the QVariant type
            return m_data.value(row);
    }

    // The view asked for other data, just return an empty QVariant
    return QVariant();
}





The next step would be to register the model with QML using the qmlRegisterType call. This is done inside the main.cpp before the QML file was loaded.

#include <QtGui>
#include <QtQml>

#include "dataentrymodel.h"

int main(int argc, char *argv[])
{
    QGuiApplication app(argc, argv);

    // register the type DataEntryModel
    // under the url "org.example" in version 1.0
    // under the name "DataEntryModel"
    qmlRegisterType<DataEntryModel>("org.example", 1, 0, "DataEntryModel");

    QQmlApplicationEngine engine;
    engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

    return app.exec();
}





Now you can access the DataEntryModel using the QML import statement import org.example 1.0 and use it just like other QML item DataEntryModel {}.

We use this in this example to display a simple list of color entries.

import org.example 1.0

ListView {
    id: view
    anchors.fill: parent
    model: DataEntryModel {}
    delegate: ListDelegate {
        // use the defined model role "display"
        text: model.display
    }
    highlight: ListHighlight { }
}





The ListDelegate is a custom type to display some text. The ListHighlight is just a rectangle. The code was extracted to keep the example compact.

The view can now display a list of strings using the C++ model and the display property of the model. It is still very simple, but already usable in QML. Normally the data is provided from outside the model and the model would act as an interface to the view.




More Complex Data

In reality the model data is often much more complex. So there is a need to define custom roles so that the view can query other data via properties. For example the model could provide not only the color as hex string, but maybe also the hue, saturation and brightness from the HSV color model as “model.hue”, “model.saturation” and “model.brightness” in QML.

#ifndef ROLEENTRYMODEL_H
#define ROLEENTRYMODEL_H

#include <QtCore>
#include <QtGui>

class RoleEntryModel : public QAbstractListModel
{
    Q_OBJECT
public:
    // Define the role names to be used
    enum RoleNames {
        NameRole = Qt::UserRole,
        HueRole = Qt::UserRole+2,
        SaturationRole = Qt::UserRole+3,
        BrightnessRole = Qt::UserRole+4
    };

    explicit RoleEntryModel(QObject *parent = 0);
    ~RoleEntryModel();

    // QAbstractItemModel interface
public:
    virtual int rowCount(const QModelIndex &parent) const override;
    virtual QVariant data(const QModelIndex &index, int role) const override;
protected:
    // return the roles mapping to be used by QML
    virtual QHash<int, QByteArray> roleNames() const override;
private:
    QList<QColor> m_data;
    QHash<int, QByteArray> m_roleNames;
};

#endif // ROLEENTRYMODEL_H





In the header we added the role mapping to be used for QML. When QML tries now to access a property from the model (e.g. “model.name”) the listview will lookup the mapping for “name” and ask the model for data using the NameRole. User defined roles should start with Qt::UserRole and need to be unique for each model.

#include "roleentrymodel.h"

RoleEntryModel::RoleEntryModel(QObject *parent)
    : QAbstractListModel(parent)
{
    // Set names to the role name hash container (QHash<int, QByteArray>)
    // model.name, model.hue, model.saturation, model.brightness
    m_roleNames[NameRole] = "name";
    m_roleNames[HueRole] = "hue";
    m_roleNames[SaturationRole] = "saturation";
    m_roleNames[BrightnessRole] = "brightness";

    // Append the color names as QColor to the data list (QList<QColor>)
    for(const QString& name : QColor::colorNames()) {
        m_data.append(QColor(name));
    }

}

RoleEntryModel::~RoleEntryModel()
{
}

int RoleEntryModel::rowCount(const QModelIndex &parent) const
{
    Q_UNUSED(parent);
    return m_data.count();
}

QVariant RoleEntryModel::data(const QModelIndex &index, int role) const
{
    int row = index.row();
    if(row < 0 || row >= m_data.count()) {
        return QVariant();
    }
    const QColor& color = m_data.at(row);
    qDebug() << row << role << color;
    switch(role) {
    case NameRole:
        // return the color name as hex string (model.name)
        return color.name();
    case HueRole:
        // return the hue of the color (model.hue)
        return color.hueF();
    case SaturationRole:
        // return the saturation of the color (model.saturation)
        return color.saturationF();
    case BrightnessRole:
        // return the brightness of the color (model.brightness)
        return color.lightnessF();
    }
    return QVariant();
}

QHash<int, QByteArray> RoleEntryModel::roleNames() const
{
    return m_roleNames;
}





The implementation now has changed only in two places. First in the initialization. We now initialize the data list with QColor data types. Additionally we define our role name map to be accessible for QML. This map is returned later in the ::roleNames function.

The second change is in the ::data function. We extend the switch to cover the other roles (e.g hue, saturation, brightness). There is no way to return a SVG name from a color, as a color can take any color and SVG names are limited. So we skip this. Storing the names would require to create a structure struct { QColor, QString } to be able to identify the named color.

After registering the type we can use the model and its entries in our user interface.

ListView {
    id: view
    anchors.fill: parent
    model: RoleEntryModel {}
    focus: true
    delegate: ListDelegate {
        text: 'hsv(' +
              Number(model.hue).toFixed(2) + ',' +
              Number(model.saturation).toFixed() + ',' +
              Number(model.brightness).toFixed() + ')'
        color: model.name
    }
    highlight: ListHighlight { }
}





We convert the returned type to a JS number type to be able to format the number using fixed-point notation. The code would also work without the Number call (e.g. plain model.saturation.toFixed(2)). Which format to choose, depends how much you trust the incoming data.




Dynamic Data

Dynamic data covers the aspects of inserting, removing and clearing the data from the model. The QAbstractListModel expect a certain behavior when entries are removed or inserted. The behavior is expressed in signals which needs to be called before and after the manipulation. For example to insert a row into a model you need first to emit the signal beginInsertRows, then manipulate the data and then finally emit endInsertRows.

We will add the following functions to our headers. These functions are declared using Q_INVOKABLE to be able to call them from QML. Another way would be to declare them a public slots.

// inserts a color at the index (0 at begining, count-1 at end)
Q_INVOKABLE void insert(int index, const QString& colorValue);
// uses insert to insert a color at the end
Q_INVOKABLE void append(const QString& colorValue);
// removes a color from the index
Q_INVOKABLE void remove(int index);
// clear the whole model (e.g. reset)
Q_INVOKABLE void clear();





Additionally we define a count property to get the size of the model and a get method to get a color at the given index. This is useful when you would like to iterate over the model content from QML.

// gives the size of the model
Q_PROPERTY(int count READ count NOTIFY countChanged)
// gets a color at the index
Q_INVOKABLE QColor get(int index);





The implementation for insert checks first the boundaries and if the given value is valid. Only then do we begin inserting the data.

void DynamicEntryModel::insert(int index, const QString &colorValue)
{
    if(index < 0 || index > m_data.count()) {
        return;
    }
    QColor color(colorValue);
    if(!color.isValid()) {
        return;
    }
    // view protocol (begin => manipulate => end]
    emit beginInsertRows(QModelIndex(), index, index);
    m_data.insert(index, color);
    emit endInsertRows();
    // update our count property
    emit countChanged(m_data.count());
}





Append is very simple. We reuse the insert function with the size of the model.

void DynamicEntryModel::append(const QString &colorValue)
{
    insert(count(), colorValue);
}





Remove is similar to insert but it calls according to the remove operation protocol.

void DynamicEntryModel::remove(int index)
{
    if(index < 0 || index >= m_data.count()) {
        return;
    }
    emit beginRemoveRows(QModelIndex(), index, index);
    m_data.removeAt(index);
    emit endRemoveRows();
    // do not forget to update our count property
    emit countChanged(m_data.count());
}





The helper function count is trivial. It just returns the data count. The get function is also quite simple.

QColor DynamicEntryModel::get(int index)
{
    if(index < 0 || index >= m_data.count()) {
        return QColor();
    }
    return m_data.at(index);
}





You need to be carefull that you only return a value which QML understands. If it is not one of the basic QML types or types kown to QML you need to register the type first with qmlRegisterType or qmlRegisterUncreatableType. You use qmlRegisterUncreatableType if the user shall not be able to instantiate its own object in QML.

Now you can use the model in QML and insert, append, remove entries from the model. Here is a small example which allows the user to enter a color name or color hex value and the color is then appended onto the model and shown in the list view. The red circle on the delegate allows the user to remove this entry from the model. After the entry is remove the list view is notified by the model and updates its content.


[image: ../../_images/modelview.png]








And here is the QML code. You find the full source code also in the assets for this chapter. The example uses the QtQuick.Controls and QtQuick.Layout module to make the code more compact. These controls module provides a set of desktop related ui elements in QtQuick and the layouts module provides some very useful layout managers.

import QtQuick 2.5
import QtQuick.Window 2.2
import QtQuick.Controls 1.5
import QtQuick.Layouts 1.2

// our module
import org.example 1.0

Window {
    visible: true
    width: 480
    height: 480


    Background { // a dark background
        id: background
    }

    // our dyanmic model
    DynamicEntryModel {
        id: dynamic
        onCountChanged: {
            // we print out count and the last entry when count is changing
            print('new count: ' + count);
            print('last entry: ' + get(count-1));
        }
    }

    ColumnLayout {
        anchors.fill: parent
        anchors.margins: 8
        ScrollView {
            Layout.fillHeight: true
            Layout.fillWidth: true
            ListView {
                id: view
                // set our dynamic model to the views model property
                model: dynamic
                delegate: ListDelegate {
                    width: ListView.view.width
                    // construct a string based on the models proeprties
                    text: 'hsv(' +
                          Number(model.hue).toFixed(2) + ',' +
                          Number(model.saturation).toFixed() + ',' +
                          Number(model.brightness).toFixed() + ')'
                    // sets the font color of our custom delegates
                    color: model.name

                    onClicked: {
                        // make this delegate the current item
                        view.currentIndex = index
                        view.focus = true
                    }
                    onRemove: {
                        // remove the current entry from the model
                        dynamic.remove(index)
                    }
                }
                highlight: ListHighlight { }
                // some fun with transitions :-)
                add: Transition {
                    // applied when entry is added
                    NumberAnimation {
                        properties: "x"; from: -view.width;
                        duration: 250; easing.type: Easing.InCirc
                    }
                    NumberAnimation { properties: "y"; from: view.height;
                        duration: 250; easing.type: Easing.InCirc
                    }
                }
                remove: Transition {
                    // applied when entry is removed
                    NumberAnimation {
                        properties: "x"; to: view.width;
                        duration: 250; easing.type: Easing.InBounce
                    }
                }
                displaced: Transition {
                    // applied when entry is moved
                    // (e.g because another element was removed)
                    SequentialAnimation {
                        // wait until remove has finished
                        PauseAnimation { duration: 250 }
                        NumberAnimation { properties: "y"; duration: 75
                        }
                    }
                }
            }
        }
        TextEntry {
            id: textEntry
            onAppend: {
                // called when the user presses return on the text field
                // or clicks the add button
                dynamic.append(color)
            }

            onUp: {
                // called when the user presses up while the text field is focused
                view.decrementCurrentIndex()
            }
            onDown: {
                // same for down
                view.incrementCurrentIndex()
            }

        }
    }
}





Model view programming is one of the hardest tasks in Qt. It is one of the very few classes where you have to implement an interface as a normal application developer. All other classes you just use normally. The sketching of models should always start on the QML side. You should envision how your users would use your model inside QML. For this it is often a good idea to create a prototype first using the ListModel to see how this best works in QML. This is also true when it comes to defining QML APIs. Making data available from C++ to QML is not only a technology boundary it is also a programming paradigm change from imperative to declarative style programming. So be prepared for some set backs and aha moments:-).
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Extending QML with C++

Autor da secção: jryannel [https://github.com/jryannel]


Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



Executing QML within the confined space that QML as a language offers can sometimes be limiting. By extending the QML run-time with native functionality written in C++, the application can utilize the full performance and freedom of the base platform.


Understanding the QML Run-time

When running QML, it is being executed in a run-time environment. The run-time is implemented in C++ in the QtQml module. It consists of an engine, responsible for the execution of QML, contexts, holding the properties accessible for each component, and components, the instantiated QML elements.

#include <QtGui>
#include <QtQml>

int main(int argc, char **argv)
{
    QGuiApplication app(argc, argv);
    QUrl source(QStringLiteral("qrc:/main.qml"));
    QQmlApplicationEngine engine;
    engine.load(source);
    return app.exec();
}





In the example the QGuiApplication encapsulates all that is related to the application instance (e.g. application name, command line arguments and managing the event loop). The QQmlApplicationEngine manages the hierarchical order of contexts and components. It requires typical a qml file to be loaded as the starting point of your application. In this case it is a main.qml containing a window and a text type.


Nota

Loading a main.qml with a simple Item as the root type through the QmlApplicationEngine will not show anything on your display, as it requires a window to manage a surface for rendering. The engine is capable of loading qml code which does not contain any user interface (e.g plain objects). Because of this it does not create a window for you by default. The qmlscene or the new qml runtime will internally first check if the main qml file contains a window as a root item and if not create one for you and set the root item as a child to the newly created window.



import QtQuick 2.5
import QtQuick.Window 2.2

Window {
    visible: true
    width: 512
    height: 300

    Text {
        anchors.centerIn: parent
        text: "Hello World!"
    }
}





In the qml file we declare our dependencies here it is QtQuick and QtQuick.Window. These declaration will trigger a lookup for these modules in the import paths and on success will load the required plugins by the engine. The newly loaded types will then be made available to the qml file controlled by a qmldir.

Is it also possible to shortcut the plugin creation by adding our types directly to the engine. Here we assume we have a CurrentTime QObject based class.

QQmlApplicationEngine engine;

qmlRegisterType<CurrentTime>("org.example", 1, 0, "CurrentTime");

engine.load(source);





Now we can also use the CurrentTime type in our qml file.

import org.example 1.0

CurrentTime {
    // access properties, functions, signals
}





For the really lazy there is also the very direct way through context properties.

QScopedPointer<CurrentTime> current(new CurrentTime());

QQmlApplicationEngine engine;

engine.rootContext().setContextProperty("current", current.value())

engine.load(source);






Nota

Do not mix up setContextProperty() and setProperty(). The first on sets a context property on a qml context, and setProperty() sets a dynamic property value on a QObject and will not help you.



Now you can use the current property everywhere in your application. Thanks to context inheritance.

import QtQuick 2.5
import QtQuick.Window 2.0

Window {
    visible: true
    width: 512
    height: 300

    Component.onCompleted: {
        console.log('current: ' + current)
    }
}





Here are the different ways you can extend QML in general:


	Context properties - setContextProperty()

	Register type with engine - calling qmlRegisterType in your main.cpp

	QML extension plugins - To be discussed next



Context properties are easy to use for small applications. They do not require many effort you just expose your system API with kind of global objects. It is helpful to ensure there will be no naming conflicts (e.g by using a special character for this ($) for example $.currentTime). $ is a valid character for JS variables.

Registering QML types allows the user to control the lifecycle of an c++ object from QML. This is not possible with the context properties. Also it does not pollute the global namespace. Still all types need to be registered first and by this all libraries need to be linked on application start, which in most cases is not really a problem.

The most flexible system is provided by the QML extension plugins. They allow you to register types in a plugin which is loaded when the first QML file calls the import identifier. Also by using a QML singleton there is no need to pollute the global namespace anymore. Plugins allow you to reuse modules across projects, which comes quite handy when you do more than one project with Qt.

For the remainder of this chapter will focus on the qml extension plugins. As they provide the greates flexibility and reuse.




Plugin Content

A plugin is a library with a defined interface, which is loaded on demand. This differs from a library as a library is linked and loaded on startup of the application. In the QML case the interface is called QQmlExtensionPlugin. There are two methods interesting for us initializeEngine() and registerTypes(). When the plugin is loaded first the initializeEngine() is called, which allows us to access the engine to expose plugin objects to the root context. In the majority you will only use the registerTypes() method. This allows you to register you custom QML types with the engine on the provided url.

Let us step back a little bit and think about a potential file IO type which would allow us to read/write small text files form QML. A first iteration could look like this in a mocked QML implementation.

// FileIO.qml (good)
QtObject {
    function write(path, text) {};
    function read(path) { return "TEXT"}
}





This is a pure qml implementation of a possible C++ based QML API for exploring an API. We see we should have a read and write function. Where the write function takes a path and a text and the read function takes a path and returns a text. As it looks path and text are common parameters and maybe we can extract them as properties.

// FileIO.qml (better)
QtObject {
    property url source
    property string text
    function write() { // open file and write text };
    function read() { // read file and assign to text };
}





Yes this looks more like a QML API. We use properties to allow our environment to bind to our properties and react on changes.

To create this API in C++ we would need to create an interface something like this.

class FileIO : public QObject {
    ...
    Q_PROPERTY(QUrl source READ source WRITE setSource NOTIFY sourceChanged)
    Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)
    ...
public:
    Q_INVOKABLE void read();
    Q_INVOKABLE void write();
    ...
}





This FileIO type need to be registered with the QML engine. We want to use it under the “org.example.io” module

import org.example.io 1.0

FileIO {
}





A plugin could expose several types with the same module. But it can not expose several modules from one plugin. So there is a one to one relationship between modules and plugins. This relationship is expressed by the module identifier.




Creating the plugin

Qt Creator contains a wizard to create a QtQuick 2 QML Extension Plugin we use it to create a plugin called fileio with a FileIO object to start with in the module “org.example.io”.

The plugin class is dervived from QQmlExtensionPlugin and implements the registerTypes() function. The Q_PLUGIN_METADATA  line is mandatory to identify the plugin as an qml extension plugin. Besides this there is nothing spectacular going on.

#ifndef FILEIO_PLUGIN_H
#define FILEIO_PLUGIN_H

#include <QQmlExtensionPlugin>

class FileioPlugin : public QQmlExtensionPlugin
{
    Q_OBJECT
    Q_PLUGIN_METADATA(IID "org.qt-project.Qt.QQmlExtensionInterface")

public:
    void registerTypes(const char *uri);
};

#endif // FILEIO_PLUGIN_H





In the implementation of the registerTypes we simply register our FileIO class using the qmlRegisterType function.

#include "fileio_plugin.h"
#include "fileio.h"

#include <qqml.h>

void FileioPlugin::registerTypes(const char *uri)
{
    // @uri org.example.io
    qmlRegisterType<FileIO>(uri, 1, 0, "FileIO");
}





Interestingly we can not see here the module URI (e.g. org.example.io). This seems to be set from the outside.

When you look into your project directory you will find a qmldir file. This file specifies the content of your qml plugin or better the QML side of your plugin. It should look like this for you.

module org.example.io
plugin fileio





The module is the URI under which your plugin is reachable by others and the plugin line must be identical with your plugin file name (under mac this would be libfileio_debug.dylib on the file system and fileio in the qmldir). These files where created by Qt Creator based on the given information. The module uri is also available in the .pro file. There is is used to build up the install directory.

When you call make install in your build folder the library will be copied into the Qt qml folder (for Qt 5.4 on mac this would be “~/Qt/5.4/clang_64/qml”. The exact path depends on you Qt installation location and the used compiler on your system). There you will find a the library inside the “org/example/io” folder. The content are these two files currently

libfileio_debug.dylib
qmldir





When importing a module called “org.example.io”, the qml engine will look in one of the import paths and tries to locate the “org/example/io” path with a qmldir. The qmldir then will tell the engine which library to load as a qml extension plugin using which module URI. Two modules with the same URI will override each other.




FileIO Implementation

The FileIO implementation is straightforward. Remember the API we want to create should look like this.

class FileIO : public QObject {
    ...
    Q_PROPERTY(QUrl source READ source WRITE setSource NOTIFY sourceChanged)
    Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)
    ...
public:
    Q_INVOKABLE void read();
    Q_INVOKABLE void write();
    ...
}





We will leave out the properties, as they are simple setters and getters.

The read method opens a file in read mode and reads the data using a text stream.

void FileIO::read()
{
    if(m_source.isEmpty()) {
        return;
    }
    QFile file(m_source.toLocalFile());
    if(!file.exists()) {
        qWarning() << "Does not exits: " << m_source.toLocalFile();
        return;
    }
    if(file.open(QIODevice::ReadOnly)) {
        QTextStream stream(&file);
        m_text = stream.readAll();
        emit textChanged(m_text);
    }
}





When the text is changed it is necessary to inform others about the change using emit textChanged(m_text). Otherwise property binding will not work.

The write method does the same but opens the file in write mode and uses the stream to write the contents.

void FileIO::write()
{
    if(m_source.isEmpty()) {
        return;
    }
    QFile file(m_source.toLocalFile());
    if(file.open(QIODevice::WriteOnly)) {
        QTextStream stream(&file);
        stream << m_text;
    }
}





Do not forget to call make install at the end. Otherwise your plugin files will not be copied over to the qml folder and the qml engine will not be able to locate the module.

As the reading and writing is blocking you should only use this FileIO for small texts, otherwise you will block the UI thread of Qt. Be warned!




Using FileIO

Now we can use our newly created file to access some nice data. For this example we want to read some city data in a JSON format and display it in a table. We will use two projects, one the extension plugin (called fileio) which provides us a way to read and write text from a file and the other one, which displays the data in a table (CityUI) by using the file io for reading and writing of files. The data used in this example is in the cities.json file.


[image: ../../_images/cityui_mock.png]


JSON is just text, which is formatted in such a way that it can be converted into a valid JS object/array and back to text. We use our FileIO to read the JSON formatted data and convert it into a JS object using JSON.parse(). The data is later used as a model to the table view. This is roughly the content of our read document function. For saving we convert the data back into a text format and use the write function for saving.

The city JSON data is a formatted text file, with a set of city data entries, where each entry contains interesting data about the city.

[
    {
        "area": "1928",
        "city": "Shanghai",
        "country": "China",
        "flag": "22px-Flag_of_the_People's_Republic_of_China.svg.png",
        "population": "13831900"
    },
    ...
]






The Application Window

We use the Qt Creator QtQuick Application wizard to create a Qt Quick controls based application. We will not use the new QML forms as this is difficult to explain in a book, although the new forms approach with a ui.qml file is much more usable than previous. So you can remove/delete the forms file for now.

The basic setup is an ApplicationWindow which can contain a toolbar, menubar and statusbar. We will only use the menubar to create some standard menu entries for opening and saving the document. The basic setup will just display an empty window.

import QtQuick 2.5
import QtQuick.Controls 1.3
import QtQuick.Window 2.2
import QtQuick.Dialogs 1.2

ApplicationWindow {
    id: root
    title: qsTr("City UI")
    width: 640
    height: 480
    visible: true
}








Using Actions

To better use/reuse our commands we use the QML Action type. This will allow us later to use the same action also for a potential tool bar. The open and save and exit actions are quit standard. The open and save action do not contain any logic yet, this we will come later. The menubar is created with a file menu and these three action entries. Additional we prepare already a file dialog, which will allow us to pick our city document later. A dialog is not visible when declared, you need to use the open() method to show it.

...
Action {
    id: save
    text: qsTr("&Save")
    shortcut: StandardKey.Save
    onTriggered: { }
}

Action {
    id: open
    text: qsTr("&Open")
    shortcut: StandardKey.Open
    onTriggered: {}
}

Action {
    id: exit
    text: qsTr("E&xit")
    onTriggered: Qt.quit();
}

menuBar: MenuBar {
    Menu {
        title: qsTr("&File")
        MenuItem { action: open }
        MenuItem { action: save }
        MenuSeparator { }
        MenuItem { action: exit }
    }
}

...

FileDialog {
    id: openDialog
    onAccepted: { }
}








Formatting the Table

The content of the city data shall be displayed in a table. For this we use the TableView control and declare 4 columns: city, country, area, population. Each column is a standard TableViewColumn. Later we will add columns for the flag and remove operation which will require a custom column delegate.

TableView {
    id: view
    anchors.fill: parent
    TableViewColumn {
        role: 'city'
        title: "City"
        width: 120
    }
    TableViewColumn {
        role: 'country'
        title: "Country"
        width: 120
    }
    TableViewColumn {
        role: 'area'
        title: "Area"
        width: 80
    }
    TableViewColumn {
        role: 'population'
        title: "Population"
        width: 80
    }
}





Now the application should show you a menubar with a file menu and an empty table with 4 table headers. The next step will be to populate the table with useful data using our FileIO extension.


[image: ../../_images/cityui_empty.png]


The cities.json document is an array of city entries. Here is an example.

[
    {
        "area": "1928",
        "city": "Shanghai",
        "country": "China",
        "flag": "22px-Flag_of_the_People's_Republic_of_China.svg.png",
        "population": "13831900"
    },
    ...
]





Our job is it to allow the user to select the file, read it, convert it and set it onto the table view.




Reading Data

For this we let the open action open the file dialog. When the user has selected a file the onAccepted method is called on the file dialog. There we call the readDocument() function. The readDocument() function sets the url from the file dialog to our FileIO object and calls the read() method. The loaded text from FileIO is then parsed using the JSON.parse() method and the resulting object is directly set onto the table view as a model. How convenient is that.

Action {
    id: open
    ...
    onTriggered: {
        openDialog.open()
    }
}

...

FileDialog {
    id: openDialog
    onAccepted: {
        root.readDocument()
    }
}

function readDocument() {
    io.source = openDialog.fileUrl
    io.read()
    view.model = JSON.parse(io.text)
}


FileIO {
    id: io
}








Writing Data

For saving the document, we hook up the save action to the saveDocument() function. The save document function takes the model from the view, which is a JS object and converts it into a string using the JSON.stringify() function. The resulting string is set to the text property of our FileIO object and we call write() to save the data to disk. The “null” and “4” paramters on the stringify function will format the resulting JSON data using indentation with 4 spaces. This is just for better reading of the saved document.

Action {
    id: save
    ...
    onTriggered: {
        saveDocument()
    }
}

function saveDocument() {
    var data = view.model
    io.text = JSON.stringify(data, null, 4)
    io.write()
}

FileIO {
    id: io
}





This is basically the application with reading, writing and displaying a JSON document. Think about all the time spend by writing XML readers and writers. With JSON all you need is a way to read and write a text file or send receive a text buffer.


[image: ../../_images/cityui_table.png]





Finishing Touch

The application is not fully ready yet. We still want to show the flags and allow the user to modify the document by removing cities from the model.

The flags are stored for this example relative to the main.qml document in a flags folder. To be able to show them the table column needs to define a custom delegate for rendering the flag image.

TableViewColumn {
    delegate: Item {
        Image {
            anchors.centerIn: parent
            source: 'flags/' + styleData.value
        }
    }
    role: 'flag'
    title: "Flag"
    width: 40
}





That is all. It exposes the flag property from the JS model as styleData.value to the delegate. The delegate then adjust the image path to pre-pend 'flags/' and displays it.

For removing we use a similar technique to display a remove button.

TableViewColumn {
    delegate: Button {
        iconSource: "remove.png"
        onClicked: {
            var data = view.model
            data.splice(styleData.row, 1)
            view.model = data
        }
    }
    width: 40
}





For the data removal operation we get hold on the view model and then remove one entry using the JS splice function. This method is available to us as the model is from the type JS array. The splice method changes the content of an array by removing existing elements and/or adding new elements.

A JS array is unfortunately not so smart as a Qt model like the QAbstractItemModel, which will notify the view about row changes or data changes. The view will not show any updated data by now as it is never notified about any changes. Only when we set the data back to the view, the view recognizes there is new data and refreshes the view content. Setting the model again using view.model = data is a way to let the view know there was a data change.


[image: ../../_images/cityui_populated.png]







Summary

The plugin created is a very simple plugin but it can be re-used now and extended by other types for different applications. Using plugins creates a very flexible solution. For example you can now start the UI by just using the qmlscene. Open the folder where your CityUI project is an start the UI with qmlscene main.qml. I really encourage you to write your applications in a way so that they work with a qmlscene. This has a tremendous increase in turnaround time for the UI developer and it is also a good habbit to keep a clear separation.

Using plugins has one drawback the deployment gets more difficult for simple applications. You need now to deploy your plugin with your application. If this is a problem for you you can still use the same FileIO object to register it directly in your main.cpp using qmlRegisterType. The QML code would stay the same.

Often in larger projects you do not use an application as such. You have a simple qml runtime similar to qmlscene and require all native functionality to come as plugins. And your projects are simple pure qml projects using these qml extension plugins. This provides a great flexibility and removes the compilation step for UI changes. After editing a QML file you just need to run the UI. This allows the user interface writers to stay flexible and agile to make all these little changes to push pixels.

Plugins provide a nice and clean separation between C++ backend development and QML frontend development. When developing QML plugins always have the QML side in mind and do not hesitate to start with a QML only mockup first to validate your API before you implement it in C++. If an API is written in C++ people often hesitate to change it or not to speak of to rewrite it. Mocking an API in QML provides much more flexibility and less initial investment. When using plugins the switch between a mocked API and the real API is just changing the import path for the qml runtime.
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17. Assets

The assets contain all files for reading the book offline and also the chapter examples as downloadable format.


17.1. Offline Books


	Book as eBook

	Book as PDF

	Book as QtHelp






17.2. Source Code Examples


	Chapter 01 examples (ch01-assets.tgz)

	Chapter 04 examples (ch04-assets.tgz)

	Chapter 05 examples (ch05-assets.tgz)

	Chapter 06 examples (ch06-assets.tgz)

	Chapter 07 examples (ch07-assets.tgz)

	Chapter 08 examples (ch08-assets.tgz)

	Chapter 09 examples (ch09-assets.tgz)

	Chapter 10 examples (ch10-assets.tgz)

	Chapter 11 examples (ch11-assets.tgz)

	Chapter 12 examples (ch12-assets.tgz)

	Chapter 13 examples (ch13-assets.tgz)

	Chapter 14 examples (ch14-assets.tgz)

	Chapter 15 examples (ch15-assets.tgz)

	Chapter 16 examples (ch16-assets.tgz)
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Contributors

This book is the result of an open source collaboration. We wish to thank the following individuals for their work, encouragement and enthusiasm for this project.
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Giving Feedback

We would love to receive your feedback. To be enable to make it as easy for you to provide feedback and for us to track the feedback we setup a github project to host the issue tracker.

You will see throughout the chapter a small highlighted box named Issues. There you have the create and view link. The create link creates a issue with the current chapter set as the label and pre-populates the body with the current document as a backlink. The view link allows you to see all issues recorded for this chapter. It filters the issues based on the current chapter.
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Todos


Por fazer

do we need to remove all uses of anchors earlier?



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/de/ch04/index.rst, line 640.)


Por fazer

To be written



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/de/ch04/index.rst, line 823.)


Por fazer

do we cover the line, quad and cubic through an illustration, or do we need a paragraph on them?



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/de/ch06/index.rst, line 423.)


Por fazer

do we need to remove all uses of anchors earlier?



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch04/index.rst, line 496.)


Por fazer

To be written



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch04/index.rst, line 679.)


Por fazer

To be written



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch05/index.rst, line 452.)


Por fazer

do we cover the line, quad and cubic through an illustration, or do we need a paragraph on them?



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch06/index.rst, line 298.)


Por fazer

better explanation, maybe draw the 4 vertexes and their interpolation



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch09/index.rst, line 269.)


Por fazer

The code above does not have any effect on the update interval! There seems to be no media object...



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch10/index.rst, line 49.)


Por fazer

The Camera API of Qt 5 is really lacking in documentation right now. I would love to cover more advanced camera controls such as exposure and focusing, but there are no ranges or values, nor clear guides to how to use the APIs in the reference docs right now.



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch10/index.rst, line 152.)


Por fazer

Is this true? What are the rules?



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch11/index.rst, line 62.)


Por fazer

illustration



(The entrada original is located in /home/docs/checkouts/readthedocs.org/user_builds/qmlbook-pt/checkouts/master/en/ch13/index.rst, line 225.)





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    Qt5 Cadaques
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
Qt5 Cadaques

Ein Buch über Qt5 und QML.


Inhalt



	1. Ein Treffen mit Qt5

	2. Wir legen los

	3. Die Entwicklungsumgebung

	4. Ein Schneller Einstieg
	4.1. QML Syntax

	4.2. Basiselemente

	4.3. Components

	4.4. Simple Transformations

	4.5. Positioning Elements

	4.6. Layout Items

	4.7. Input Elements

	4.8. Advanced Techniques





	5. Elemente die sich Bewegen

	6. Model-View-Delegate Konzept
	6.1. Das Konzept

	6.2. Basic Models

	6.3. Dynamische Ansichten

	6.4. Der Delegat

	6.5. Advanced Techniques

	6.6. Summary





	7. Zeichnen mit Qt5

	8. Partikel Simulieren

	9. Effekte mit OpenGL

	10. Multimedia

	11. Netzwerk Verbindungen

	12. Daten Speichern

	13. Dynamisches QML

	14. JavaScript Programmieren

	15. Einführung in die C++ Programmierung mit Qt

	16. QML Erweiterungen mit C++

	17. Assets
	17.1. Offline Books

	17.2. Source Code Examples















          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    5. Elemente die sich Bewegen
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
5. Elemente die sich Bewegen





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    9. Effekte mit OpenGL
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
9. Effekte mit OpenGL





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    10. Multimedia
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
10. Multimedia





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    11. Netzwerk Verbindungen
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
11. Netzwerk Verbindungen





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    16. QML Erweiterungen mit C++
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
16. QML Erweiterungen mit C++





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    2. Wir legen los
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
2. Wir legen los





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    8. Partikel Simulieren
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
8. Partikel Simulieren





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    14. JavaScript Programmieren
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
14. JavaScript Programmieren





          

      

      

    



    
        © Copyright 2012-2014 Jürgen Bocklage-Ryannel and Johan Thelin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
      Última actualização em fev 13, 2018.
    




  

  
    
    
    6. Model-View-Delegate Konzept
    
    

    
 
  
  

    
      Navegação

      
        	Qt5 Cadaques Book »
 
      

    


    
      
          
            
  
6. Model-View-Delegate Konzept

Autor da secção: Tobias Küchel [https://github.com/jolly-jump]


Nota

Last Build: fevereiro 13, 2018 at 22:12 CET

The source code for this chapter can be found in the assets folder.



In Qt Quick wird ein Model View Controller Konzept [https://de.wikipedia.org/wiki/Model_View_Controller]
umgesetzt. Dabei werden Daten von deren Darstellung über ein “model”
und ein “view” getrennt.  Für die Darstellung der Daten werden für
einzelne Datenelemente sogenannten “delegates” verwendet.  Qt Quick
hat bereits einige Modelle und Darstellungen vordefiniert. Um diese
verwenden zu können, muss man diese Klassen verstehen und wissen wie
man zugehörige “delegate” erstellt.


6.1. Das Konzept

Ganz wichtig beim Entwickeln eines User Interfaces ist die Trennung von Daten und Darstellung zu beherzigen. Zum Beispiel könnte man ein Adressbuch als vertikale List von Texteinträgen oder als eine Tabelle von Bildern der Kontakte arrangieren. In beiden Fällen sind die Daten identisch: das Adressbuch aber die Visualisierung ist völlig anders. Die Aufteilung wird üblicherweise  Model-View-Konzept genannt. In dem Konzept ist das Telefonbuch das Modell und die Darstellung ist der “view”.

In QML werden Modell und Ansicht über sogenannte Delegaten (“delegates”) miteinander verbunden. Die Zuständigkeiten sind so aufgeteilt:


	Das Modell (“model”) beinhaltet die Daten. Jedes Datenelement kann
viele Werte enthalten. Im obigen Beispiel hat jede Adressbucheintrag
einen Namen, ein Bild und eine Telefonnummer.

	Die Daten werden über eine Ansicht (“view”) bereitgestellt, in
welchem jedes Element von einem Delegaten (“delegate”) dargestellt
wird. Die Aufgabe der Ansicht ist es die Delegaten anzuordnen. Im
Beispiel oben gäbe es mehrere mögliche Ansichten, wie man ein
Telefonbuch darstellt, z.B. über eine Zeile pro Eintrag.

	Die Delegaten (“delegate”) zeigen dann die Werte aus dem Modell dem
Benutzer an. Im obigen Beispiel würde die Telefonnummer kursiv, der
Name fett und die Adresse normal formatiert werden.



[image: digraph model_view_delegate_roles { View -> Model [label="Visualizes Model"] Delegate -> Model [label="Visualizes Model Rows"] View -> Delegate [label="Creates and Places"] }]



6.2. Basic Models

Die einfachste Möglichkeit, Daten und Ansicht zu trennen, ist für eine
Ansicht ein Repeater-Element.  Man verwendet es, um ein Datenfeld
(“array”) von Elementen zu erzeugen und es ist einfach mit
Positionselementen kombinierbar um das User Interface aufzubauen.  Ein
Repeater benötigt ein Modell, das kann eine Zahl sein, die die
Delegaten einfach genau so oft erzeugt oder ein viel komplexeres
Modell mit Daten aus dem Internet.

In der einfachsten Form, wird der Repeater verwendet um eine Anzahl
von Elementen zu erzeugen. Jedes Objekt hat dann Zugriff auf die
definierten Eigenschaften und zusätzlich auf die Variable index um
die Elemente von einander zu trennen.  Im untenstehenden Beispiel
werden zehn Instanzen eines Objekts “BlueBox” erzeugt. (“BlueBox” ist
ein Delegat, siehe unten). Die Anzahl wird von der
Eigenschaft model gesteuert. Für jedes “BlueBox”-Objekt wird das
darin definierte Text-Element erstellt, dessen Wert auf die
Variable index gesetzt wird. So können die durchnummerierten
Elemente unterschieden werden.

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: 10
        BlueBox {
            width: 120
            height: 32
            text: index
        }
    }
}






[image: ../../_images/repeater-number.png]


Nummerierte Elemente sind zwar schön, aber manchmal möchte man
komplexere Daten darstellen. Statt einer einfachen Zahl füttern wird
model mit einem JavaScript Array. Der Inhalt eines Arrays kann
alles mögliche sein: Zeichenketten, Zahlen oder Objekte.  Im
untenstehenden Beispiel wird eine Liste von Zeichenketten
verwendet. Wir können die index-Variable weiterhin verwenden aber
wir können jetzt auch auf einzelne Datenelemente zugreifen, indem wir
auf die spezielle Eigenschaft modelData zugreifen, die dann den
Wert des aktuellen Elements enthält.

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: ["Enterprise", "Columbia", "Challenger", "Discovery", "Endeavour", "Atlantis"]

        BlueBox {
            width: 100
            height: 32
            radius: 3

            text: modelData + ' (' + index + ')'
        }
    }
}






[image: ../../_images/repeater-array.png]


Weil man jetzt Daten eines Array darstellen kann, will man auch
mehrere Daten pro Array-Element darstellen können. Dafür braucht man
jetzt bessere Modelle. Eines der trivialsten Modelle aber auch eines
der weit verbreitetsten ist das ListModel. Ein ListModel ist eine
Zusammenstellung von ListElement Elementen. Innerhalb jedes
solchen Listenelements kann es mehrere Eigenschaften mit Werten
geben. Im folgenden Beispiel ein Name und eine Farbe für jedes
Element.

Die Eigenschaft (z.B. Farbe) in jedem Element wird von der Ansicht
“Repeater” dann dem jeweiligen Objekt (hier: BlueBox) zugeordnet,
d.h. die Variablen name und surfaceColor sind dann im Objekt
Rectangle und Text erreichbar und werden als Werte verwendet.
Man kommt so nicht nur einfach an die Daten, es macht den Quellcode
auch einfach lesbarer. surfaceColor ist jetzt die Farbe des
kleinen Kreises links neben dem Namen und nicht so etwas Seltsames wie
data[i][j].

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: ListModel {
            ListElement { name: "Mercury"; surfaceColor: "gray" }
            ListElement { name: "Venus"; surfaceColor: "yellow" }
            ListElement { name: "Earth"; surfaceColor: "blue" }
            ListElement { name: "Mars"; surfaceColor: "orange" }
            ListElement { name: "Jupiter"; surfaceColor: "orange" }
            ListElement { name: "Saturn"; surfaceColor: "yellow" }
            ListElement { name: "Uranus"; surfaceColor: "lightBlue" }
            ListElement { name: "Neptune"; surfaceColor: "lightBlue" }
        }

        BlueBox {
            width: 120
            height: 32

            radius: 3
            text: name

            Box {
                anchors.left: parent.left
                anchors.verticalCenter: parent.verticalCenter
                anchors.leftMargin: 4

                width: 16
                height: 16

                radius: 8

                color: surfaceColor
            }
        }
    }
}






[image: ../../_images/repeater-model.png]


Der letztendliche Darstellung, welche in einer “Repeater”-Ansicht für
jedes Datenobjekt erzeugt wird, nennt man Delegat und wird mit der
Eigenschaft delegate ausgezeichnet. Bisher wurde dieses
Schlüsselwort nur nicht verwendet. Das heißt, der Beispielcode
Example 01 ist gleichbedeutend zum folgenden Code. Der
Unterschied ist, dass der Delegat jetzt explizit benannt wurde.

import QtQuick 2.5
import "../common"

Column {
    spacing: 2

    Repeater {
        model: 10

        delegate: BlueBox {
            width: 100
            height: 32
            text: index
        }
    }
}








6.3. Dynamische Ansichten

Repeater funktionieren zwar gut für begrenzte, nicht veränderbare
Datensätze aber im wirklichen Leben sind Modelle eher komplexer und
größer. Es werden bessere Lösungen gebraucht. Qt Quick stellt die
Elemente ListView und GridView bereit. Diese sind von einer
Flickable-Fläche abgeleitet, so dass sich der Benutzer in Darstellungen
großer Datensätze bewegen kann.  Gleichzeitig begrenzen sie die Anzahl
gleichzeitig erzeugter und dargestellter Delegaten und das bedeutet
dass nur wenigen wirklich sichtbaren Elemente aus einem großen
Datensatz dargestellt werden.


[image: ../../_images/listview-basic.png]



[image: ../../_images/gridview-basic.png]


Beide Elemente sind sehr ähnlich in der Benutzung. Wir beginnen mit
dem ListView und beschreiben dann den GridView um sie beide zu
vergleichen.

Die Ansicht ListView ist dem Repeater Element sehr ähnlich. Es
verwendet ein model und instantiiert einen Delegaten delegate
und zwischen den Delegaten kann es spacing geben. Der folgende
Code zeigt ein einfaches Setup.

import QtQuick 2.5
import "../common"

Background {
    width: 80
    height: 300

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        delegate: numberDelegate
        spacing: 5
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: 40
            height: 40
            text: index
        }
    }
}






[image: ../../_images/listview-basic.png]


Wenn das Modell mehr Daten enthält als auf den Bildschirm passt, zeigt
ListView nur einen Teil der Daten. Das Standardverhalten von Qt
Quick beschränkt die Anzeige eines ListView allerdings nicht auf die
Bildschirmfläche in der die Delegatenansichten gezeigt werden. Die
Delegaten können ausserhalb der ListView sichtbar sein und immer wenn
das Programm dynamisch Delegaten hinzufügt oder löscht, könnten diese
für den User sichtbar sein. Um das zu verhindern muss das Abschneiden
(“clipping”) für das Listview-Element aktiviert werden. Die folgende
Illustration zeigt das Ergebnis von clipping (links) im Vergleich zu
ohne clipping (rechts).


[image: ../../_images/listview-clip.png]


Für den Benutzer ist die Ansicht ListView eine scrollbare
Fläche. Es unterstützt kinetisches Scrollen, d.h. man kann sehr
schnell durch den Inhalt wischen. Standardmäßig kann es auch über das
Ende und den Anfang hinaus gezogen werden, worauf es zurückfedert um
dem Benutzer zu zeigen, dass Anfang oder Ende erreicht wurden.

Das Verhalten am Ende der Ansicht wird über die Eigenschaft
boundsBehavior gesteuert. Diese Eigentschaft kann zählbare Werte
enthalten, standardmäßig bedeutet Flickable.DragAndOvershootBounds
dass die Ansicht sowohl über seine Grenzen gezogen als auch gewischt
werden kann. Mit Flickable.StopAtBounds wird die Ansicht nie über
die Grenze gehen und mit Flickable.DragOverBounds kann der
Benutzer durch ziehen über die Grenze treten, nicht allerdings durch
schnelles Wischen.

Man kann die Positionen an denen die Ansicht gestoppt wird
einschränken: mit hilfe der Eigenschaft snapMode. Standardmäßig
bedeutet ListView.NoSnap dass die Ansicht an jeder Position
anhalten kann. Setzt man sie auf ListView.SnapToItem wird die
Ansicht immer oben am oberen Rand eines Elements
ausgerichtet. Schließlich wird bei ListView.SnapOneItem die
Ansicht immer nur höchstens ein Element vom ersten sichtbaren Element
anhalten, sobald die Maus oder ein touch losgelassen wird. Der
letzte Modus ist nützlich beim Blättern durch Seiten.


6.3.1. Hoch- oder Querformat

Die ListView-Ansicht erlaubt neben vertikaler Anzeige und Scrollen
auch horizontales Scrollen, welches genauso nützlich sein kann. Die
Ausrichtung der ListView-Ansicht wird von der Eigenschaft
orientation gesteuert. Es kann entweder den Standardwert
ListView.Vertical oder den Wert ListView.Horizontal
bekommen. Im folgenden sieht man letzteres.

import QtQuick 2.5
import "../common"

Background {
    width: 480
    height: 80

    ListView {
        anchors.fill: parent
        anchors.margins: 20
        spacing: 4
        clip: true
        model: 100
        orientation: ListView.Horizontal
        delegate: numberDelegate
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: 40
            height: 40
            text: index
        }
    }
}






[image: ../../_images/listview-horizontal.png]


Wie man sich vorstellen kann geht die Richtung der horizontalen
Darstellung von links nach rechts. Über die Eigentschaft
layoutDirection kann man mit Qt.LeftToRight oder mit
Qt.RightToLeft die Darstellungsrichtung beeinflussen.




6.3.2. Tasten Navigation and Highlighting

Wenn man eine ListView-Ansicht mit einem touch-fähigen Gerät
verwendet, reicht die Darstellung aus. Wenn man aber mit einer
Tastatur oder sogar nur mit Pfeiltasten ein Element auswählen soll,
braucht man ein Verfahren um das momentan ausgewählte Element
hervorzuheben. In QML nennt man das “highlighting”.

Die Ansichten wie ListView in QML erlauben es eines der gezeigten
Delegaten hervorheben zu können. Man kann es als zusätzlichen
Delegaten ansehen, nur dass dieser eben nur einmal erzeugt wird und an
der Stelle des momentanen Elements angezeigt wird.

Im folgenden Beispiel wird das demonstriert. Man muss zwei Attribute
dafür verwenden. Erstens, die focus-Eigenschaft muss auf true
gesetzt werden, so bekommt die Tastatur von der ListView-Ansicht
den Fokus. Zweitens muss die highlight-Eigenschaft auf den
hervorzugebenden Delegaten gesetzt sein. Der hervorgehobene Delegat
bekommt die x, y und die height-Werte des aktuellen
Elements. Wenn der width-Wert nicht angegeben wird, dan wird auch
die Breite des aktuellen Elements verwendet.

Im Beispiel wird angeheftete Eigenschaft ListView.view.width für
die Breite verwendet.  Angeheftete Eigenschaften, die für Delegaten
verfügbar sind werden im Abschnitt zu Delegaten dieses Kapitels
diskutiert, aber es ist schon jetzt gut zu wissen, dass die gleichen
Eigenschaften auch hervorgehobenen Delegaten zur Verfügung stehen.

import QtQuick 2.5
import "../common"

Background {
    width: 240
    height: 300

    ListView {
        id: view
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        delegate: numberDelegate
        spacing: 5

        highlight: highlightComponent
        focus: true
    }

    Component {
        id: highlightComponent

        GreenBox {
            width: ListView.view.width
        }
    }

    Component {
        id: numberDelegate

        Item {
            width: ListView.view.width
            height: 40

            Text {
                anchors.centerIn: parent

                font.pixelSize: 10

                text: index
            }
        }
    }
}






[image: ../../_images/listview-highlight.png]


When using a highlight in conjunction with a ListView, a number of properties can be used to control its behavior. The highlightRangeMode controls how the highlight is affected by what is shown in the view. The default setting, ListView.NoHighlightRange means that the highlight and the visible range of items in the view not are related at all.

The value ListView.StrictlyEnforceRange ensures that the highlight is always visible. If an action attempts to move the highlight outside the visible part of the view, the current item will change accordingly, so that the highlight remains visible.

The middle ground is the ListView.ApplyRange value. It attempts to keep the highlight visible, but does not alter the current item to enforce this. Instead, the highlight is allowed to move out of view if necessary.

In the default configuration, the view is responsible for moving the highlight into position. The speed of the movement and resizing can be controlled, either as a speed or as a duration. The properties involved are highlightMoveSpeed, highlightMoveDuration, highlightResizeSpeed and highlightResizeDuration. By default, the speed is set to 400 pixels per second, and the duration is set to -1, indicating that the speed and distance control the duration. If both a speed and a duration is set, the one that results in the quickest animation is chosen.

To control the movement of the highlight more in detail, the highlightFollowCurrentItem property can be set to false. This means that the view is no longer responsible for the movement of the highlight delegate. Instead, the movement can be controlled through a Behavior or an animation.

In the example below, the y property of the highlight delegate is bound to the ListView.view.currentItem.y attached property. This ensures that the highlight follows the current item. However, as we do not let the view move the highlight, we can control how the element is moved. This is done through the Behavior on y. In the example below, the movement is divided into three steps: fading out, moving, before fading in. Notice how SequentialAnimation and PropertyAnimation elements can be used in combination with the NumberAnimation to create a more complex movement.

    Component {
        id: highlightComponent

        Item {
            width: ListView.view.width
            height: ListView.view.currentItem.height

            y: ListView.view.currentItem.y

            Behavior on y {
                SequentialAnimation {
                    PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 0; duration: 200 }
                    NumberAnimation { duration: 1 }
                    PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 1; duration: 200 }
                }
            }

            GreenBox {
                id: highlightRectangle
                anchors.fill: parent
            }
        }
    }








6.3.3. Header and Footer

At the end of the ListView contents, a header and a footer element can be inserted. These can be considered special delegates places at the beginning or end of the list. For a horizontal list, these will not appear at the head or foot, but rather at then beginning or end, depending on the layoutDirection used.

The example below illustrates how an header and footer can be used to enhance the perception of the beginning and end of a list. There are other uses for these special list elements. For instance, they can be used to keep buttons to load more contents.

import QtQuick 2.5
import "../common"

Background {
    width: 240
    height: 300

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 4

        delegate: numberDelegate
        spacing: 2

        header: headerComponent
        footer: footerComponent
    }

    Component {
        id: headerComponent

        YellowBox {
            width: ListView.view.width
            height: 20
            text: 'Header'

        }
    }

    Component {
        id: footerComponent

        YellowBox {
            width: ListView.view.width
            height: 20
            text: 'Footer'
        }
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: ListView.view.width
            height: 40
            text: 'Item #' + index
        }
    }
}






Nota

Header and footer delegates do not respect the spacing property of a ListView, instead they are placed directly adjacent to the next item delegate in the list. This means that any spacing must be a part of the header and footer items.




[image: ../../_images/listview-header-footer.png]





6.3.4. The GridView

Using a GridView is very similar to using a ListView. The only real difference is that the grid view places the delegates in a two dimensional grid instead of in a linear list.


[image: ../../_images/gridview-basic.png]


Compared to a list view, the grid view does not rely on spacing and the size of its delegates. Instead, it uses the cellWidth and cellHeight properties to control the dimensions of the contents delegates. Each delegate item is then places in the top left corner of each such cell.

import QtQuick 2.5
import "../common"

Background {
    width: 220
    height: 300

    GridView {
        id: view
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        cellWidth: 45
        cellHeight: 45

        delegate: numberDelegate
    }

    Component {
        id: numberDelegate

        GreenBox {
            width: 40
            height: 40
            text: index
        }
    }
}





A GridView contains headers and footers, can use a highlight delegate and supports snap modes as well as various bounds behaviors. It can also be orientated in different directions and orientations.

The orientation is controlled using the flow property. It can be set to either GridView.LeftToRight or GridView.TopToBottom. The former value fills a grid from the left to the right, adding rows from the top to the bottom. The view is scrollable in the vertical direction. The latter value adds items from the top to the bottom, filling the view from left to right. The scrolling direction is horizontal in this case.

In addition to the flow property, the layoutDirection property can adapt the direction of the grid to left-to-right or right-to-left languages, depending on the value used.






6.4. Der Delegat

When it comes to using models and views in a custom user interface, the delegate plays a huge role in creating a look. As each item in a the model are visualized through a delegate, what is actually visible to the user are the delegates.

Each delegate gets access to a number of attached properties, some from the data model, others from the view. From the model, the properties convey the data for each item to the delegate. From the view, the properties convey state information related to the delegate within the view.

The most commonly used properties attached from the view are ListView.isCurrentItem and ListView.view. The first is a boolean indicating if the item is the current item, while the latter is a read-only reference to the actual view. Through access to the view, it is possible to create general, reusable delegates that adapt to the size and nature of the view in which they are contained. In the example below, the width of each delegate is bound to the width of the view, while the background color of each delegate depends on the attached ListView.isCurrentItem property.

import QtQuick 2.5

Rectangle {
    width: 120
    height: 300

    gradient: Gradient {
        GradientStop { position: 0.0; color: "#f6f6f6" }
        GradientStop { position: 1.0; color: "#d7d7d7" }
    }

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: 100

        delegate: numberDelegate
        spacing: 5

        focus: true
    }

    Component {
        id: numberDelegate

        Rectangle {
            width: ListView.view.width
            height: 40

            color: ListView.isCurrentItem?"#157efb":"#53d769"
            border.color: Qt.lighter(color, 1.1)

            Text {
                anchors.centerIn: parent

                font.pixelSize: 10

                text: index
            }
        }
    }
}






[image: ../../_images/delegates-basic.png]


If each item in the model is associated with an action, for instance, clicking an item acts upon it, that functionality is a part of each delegate. This divides the event management between the view, which handles the navigation between items in the view, and the delegate which handles actions on a specific item.

The most basic way to do this is to create a MouseArea within each delegate and act on the onClicked signal. This is demonstrated in the example in the next section of this chapter.


6.4.1. Animating Added and Removed Items

In some cases, the contents shown in a view changes over time. Items are added and removed as the underlaying data model is altered. In these cases, it is often a good idea to employ visual ques to give the user a sense of direction and to help the user understand what data is added or removed.

Conveniently enough, QML views attaches two signals, onAdd and onRemove, to each item delegate. By connecting animations to these, it is easy to create the movement necessary to aid the user in identifying what is taking place.

The example below demonstrates this through the use of a dynamically populated ListModel. At the bottom of the screen, a button for adding new items is shown. When it is clicked, a new item is added to the model using the append method. This triggers the creation of a new delegate in the view, and the emission of the GridView.onAdd signal. The SequentialAnimation attached to the signal causes the item to zoom into view by animating the scale property of the delegate.

When a delegate in the view is clicked, the item is removed from the model through a call to the remove method. This causes the GridView.onRemove signal to be emitted, triggering another SequentialAnimation. This time, however, the destruction of the delegate must be delayed until the animation has completed. To do this, PropertyAction element are used to set the GridView.delayRemove property to true before the animation, and false after. This ensures that the animation is allowed to complete before the delegate item is removed.

import QtQuick 2.5

Rectangle {
    width: 480
    height: 300

    gradient: Gradient {
        GradientStop { position: 0.0; color: "#dbddde" }
        GradientStop { position: 1.0; color: "#5fc9f8" }
    }

    ListModel {
        id: theModel

        ListElement { number: 0 }
        ListElement { number: 1 }
        ListElement { number: 2 }
        ListElement { number: 3 }
        ListElement { number: 4 }
        ListElement { number: 5 }
        ListElement { number: 6 }
        ListElement { number: 7 }
        ListElement { number: 8 }
        ListElement { number: 9 }
    }

    Rectangle {
        anchors.left: parent.left
        anchors.right: parent.right
        anchors.bottom: parent.bottom
        anchors.margins: 20

        height: 40

        color: "#53d769"
        border.color: Qt.lighter(color, 1.1)

        Text {
            anchors.centerIn: parent

            text: "Add item!"
        }

        MouseArea {
            anchors.fill: parent

            onClicked: {
                theModel.append({"number": ++parent.count});
            }
        }

        property int count: 9
    }

    GridView {
        anchors.fill: parent
        anchors.margins: 20
        anchors.bottomMargin: 80

        clip: true

        model: theModel

        cellWidth: 45
        cellHeight: 45

        delegate: numberDelegate
    }

    Component {
        id: numberDelegate

        Rectangle {
            id: wrapper

            width: 40
            height: 40

            gradient: Gradient {
                GradientStop { position: 0.0; color: "#f8306a" }
                GradientStop { position: 1.0; color: "#fb5b40" }
            }

            Text {
                anchors.centerIn: parent

                font.pixelSize: 10

                text: number
            }

            MouseArea {
                anchors.fill: parent

                onClicked: {
                    theModel.remove(index);
                }
            }

            GridView.onRemove: SequentialAnimation {
                PropertyAction { target: wrapper; property: "GridView.delayRemove"; value: true }
                NumberAnimation { target: wrapper; property: "scale"; to: 0; duration: 250; easing.type: Easing.InOutQuad }
                PropertyAction { target: wrapper; property: "GridView.delayRemove"; value: false }
            }

            GridView.onAdd: SequentialAnimation {
                NumberAnimation { target: wrapper; property: "scale"; from: 0; to: 1; duration: 250; easing.type: Easing.InOutQuad }
            }
        }
    }
}








6.4.2. Shape-Shifting Delegates

A commonly used mechanism in lists is that the current item is expanded when activated. This can be used to dynamically let the item expand to fill the screen to enter a new part of the user interface, or it can be used to provide slightly more information for the current item in a given list.

In the example below, each item is expanded to the full extent of the ListView containing it when clicked. The extra spaced is then used to add more information. The mechanism used to control this is a state, expanded that each item delegate can enter, where the item is expanded. In that state, a number of properties are altered.

First of all, the height of the wrapper is set to the height of the ListView. The thumbnail image is then enlarged and moved down to make it move from its small position into its larger position. In addition to this, the two hidden items, the factsView and closeButton are shown by altering the opacity of the elements. Finally, the ListView is setup.

Setting up the ListView involves setting the contentsY, that is the top of the visible part of the view, to the y value of the delegate. The other change is to set interactive of the view to false. This prevents the view from moving. The user can no longer scroll through the list or change the current item.

As the item first is clicked, it enters the expanded state, causing the item delegate to fill the ListView and the contents to rearrange. When the close button is clicked, the state is cleared, causing the delegate to return to its previous state and re-enabling the ListView.

import QtQuick 2.5

Item {
    width: 300
    height: 480

    Rectangle {
        anchors.fill: parent
        gradient: Gradient {
            GradientStop { position: 0.0; color: "#4a4a4a" }
            GradientStop { position: 1.0; color: "#2b2b2b" }
        }
    }

    ListView {
        id: listView

        anchors.fill: parent

        delegate: detailsDelegate
        model: planets
    }

    ListModel {
        id: planets

        ListElement { name: "Mercury"; imageSource: "images/mercury.jpeg"; facts: "Mercury is the smallest planet in the Solar System. It is the closest planet to the sun. It makes one trip around the Sun once every 87.969 days." }
        ListElement { name: "Venus"; imageSource: "images/venus.jpeg"; facts: "Venus is the second planet from the Sun. It is a terrestrial planet because it has a solid, rocky surface. The other terrestrial planets are Mercury, Earth and Mars. Astronomers have known Venus for thousands of years." }
        ListElement { name: "Earth"; imageSource: "images/earth.jpeg"; facts: "The Earth is the third planet from the Sun. It is one of the four terrestrial planets in our Solar System. This means most of its mass is solid. The other three are Mercury, Venus and Mars. The Earth is also called the Blue Planet, 'Planet Earth', and 'Terra'." }
        ListElement { name: "Mars"; imageSource: "images/mars.jpeg"; facts: "Mars is the fourth planet from the Sun in the Solar System. Mars is dry, rocky and cold. It is home to the largest volcano in the Solar System. Mars is named after the mythological Roman god of war because it is a red planet, which signifies the colour of blood." }
    }

    Component {
        id: detailsDelegate

        Item {
            id: wrapper

            width: listView.width
            height: 30

            Rectangle {
                anchors.left: parent.left
                anchors.right: parent.right
                anchors.top: parent.top

                height: 30

                color: "#333"
                border.color: Qt.lighter(color, 1.2)
                Text {
                    anchors.left: parent.left
                    anchors.verticalCenter: parent.verticalCenter
                    anchors.leftMargin: 4

                    font.pixelSize: parent.height-4
                    color: '#fff'

                    text: name
                }
            }


            Rectangle {
                id: image

                width: 26
                height: 26

                anchors.right: parent.right
                anchors.top: parent.top
                anchors.rightMargin: 2
                anchors.topMargin: 2

                color: "black"


                Image {
                    anchors.fill: parent

                    fillMode: Image.PreserveAspectFit

                    source: imageSource
                }
            }

            MouseArea {
                anchors.fill: parent
                onClicked: parent.state = "expanded"
            }

            Item {
                id: factsView

                anchors.top: image.bottom
                anchors.left: parent.left
                anchors.right: parent.right
                anchors.bottom: parent.bottom

                opacity: 0

                Rectangle {
                    anchors.fill: parent

                    gradient: Gradient {
                        GradientStop { position: 0.0; color: "#fed958" }
                        GradientStop { position: 1.0; color: "#fecc2f" }
                    }
                    border.color: '#000000'
                    border.width: 2

                    Text {
                        anchors.fill: parent
                        anchors.margins: 5

                        clip: true
                        wrapMode: Text.WordWrap
                        color: '#1f1f21'

                        font.pixelSize: 12

                        text: facts
                    }
                }
            }

            Rectangle {
                id: closeButton

                anchors.right: parent.right
                anchors.top: parent.top
                anchors.rightMargin: 2
                anchors.topMargin: 2

                width: 26
                height: 26

                color: "#157efb"
                border.color: Qt.lighter(color, 1.1)

                opacity: 0

                MouseArea {
                    anchors.fill: parent
                    onClicked: wrapper.state = ""
                }
            }

            states: [
                State {
                    name: "expanded"

                    PropertyChanges { target: wrapper; height: listView.height }
                    PropertyChanges { target: image; width: listView.width; height: listView.width; anchors.rightMargin: 0; anchors.topMargin: 30 }
                    PropertyChanges { target: factsView; opacity: 1 }
                    PropertyChanges { target: closeButton; opacity: 1 }
                    PropertyChanges { target: wrapper.ListView.view; contentY: wrapper.y; interactive: false }
                }
            ]

            transitions: [
                Transition {
                    NumberAnimation {
                        duration: 200;
                        properties: "height,width,anchors.rightMargin,anchors.topMargin,opacity,contentY"
                    }
                }
            ]
        }
    }
}
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The techniques demonstrated here to expand the delegate to fill the entire view can be employed to make an item delegate shift shape in a much smaller way. For instance, when browsing through a list of songs, the current item could be made slightly larger, accommodating more information about that particular item.






6.5. Advanced Techniques


6.5.1. The PathView

The PathView element is the most powerful, but also the most complex, view provided in Qt Quick. It makes it possible to create a view where the items are laid out along an arbitrary path. Along the same path, attributes such as scale, opacity and more can be controlled in detail.

When using the PathView, you have to define a delegate and a path. In addition to this, the PathView itself can be customized through a range of properties. The most common being pathItemCount, controlling the number of visible items at once, and the highlight range control properties preferredHighlightBegin, preferredHighlightEnd and highlightRangeMode, controlling where along the path the current item is to be shown.

Before looking at the highlight range control properties in depth, we must look at the path property. The path property expects a Path element defining the path that the delegates follows as the PathView is being scrolled. The path is defined using the startX and startY properties in combinations with path elements such as PathLine, PathQuad and PathCubic.  These elements are joined together to form a two-dimensional path.


Por fazer

do we cover the line, quad and cubic through an illustration, or do we need a paragraph on them?



When the path has been defined, it is possible to further tune it using PathPercent and PathAttribute elements. These are placed in between path elements and provides a more fine grained control over the path and the delegates on it. The PathPercent controls how large a portion of the path that has been covered between each element. This, in turn, controls the distribution of delegates along the path, as they are distributed proportionally to the percentage progressed.

This is where the preferredHighlightBegin and preferredHighlightEnd properties of the PathView enters the picture. They both expect real values in the range between zero and one. The end is also expected to be more or equal to the beginning. Setting both these properties to, for instance, 0.5, the current item will be displayed at the location fifty percent along the path.

In the Path, the PathAttribute elements are placed between elements, just as PathPercent elements. They let you specify property values that are interpolated along the path. These properties are attached to the delegates and can be used to control any conceivable property.


[image: ../../_images/pathview-coverview.png]


The example below demonstrates how the PathView element is used to create view of cards that the user can flip through. It employs a number of tricks to do this. The path consists of three PathLine elements. Using PathPercent elements, the central element is properly centered and provided enough space not to be cluttered by other elements. Using PathAttribute elements, the rotation, size and z-value are controlled.

In addition to the path, the pathItemCount property of the PathView has been set. This controls how densely populated the path will be. The preferredHighlightBegin and preferredHighlightEnd the PathView.onPath is used to control the visibility of the delegates.

    PathView {
        anchors.fill: parent

        delegate: flipCardDelegate
        model: 100

        path: Path {
            startX: root.width/2
            startY: 0

            PathAttribute { name: "itemZ"; value: 0 }
            PathAttribute { name: "itemAngle"; value: -90.0; }
            PathAttribute { name: "itemScale"; value: 0.5; }
            PathLine { x: root.width/2; y: root.height*0.4; }
            PathPercent { value: 0.48; }
            PathLine { x: root.width/2; y: root.height*0.5; }
            PathAttribute { name: "itemAngle"; value: 0.0; }
            PathAttribute { name: "itemScale"; value: 1.0; }
            PathAttribute { name: "itemZ"; value: 100 }
            PathLine { x: root.width/2; y: root.height*0.6; }
            PathPercent { value: 0.52; }
            PathLine { x: root.width/2; y: root.height; }
            PathAttribute { name: "itemAngle"; value: 90.0; }
            PathAttribute { name: "itemScale"; value: 0.5; }
            PathAttribute { name: "itemZ"; value: 0 }
        }

        pathItemCount: 16

        preferredHighlightBegin: 0.5
        preferredHighlightEnd: 0.5
    }





The delegate, shown below, utilizes the attached properties itemZ, itemAngle and itemScale from the PathAttribute elements. It is worth noticing that the attached properties of the delegate only are available from the wrapper. Thus, the rotX property is defined to be able to access the value from within the Rotation element.

Another detail specific to PathView worth noticing is the usage of the attached PathView.onPath property. It is common practice to bind the visibility to this, as this allows the PathView to keep invisible elements for caching purposes. This can usually not be handled through clipping, as the item delegates of a PathView are placed more freely than the item delegates of ListView or GridView views.

    Component {
        id: flipCardDelegate

        BlueBox {
            id: wrapper

            width: 64
            height: 64
            antialiasing: true

            gradient: Gradient {
                GradientStop { position: 0.0; color: "#2ed5fa" }
                GradientStop { position: 1.0; color: "#2467ec" }
            }


            visible: PathView.onPath

            scale: PathView.itemScale
            z: PathView.itemZ

            property variant rotX: PathView.itemAngle
            transform: Rotation {
                axis { x: 1; y: 0; z: 0 }
                angle: wrapper.rotX;
                origin { x: 32; y: 32; }
            }
            text: index
        }
    }





When transforming images or other complex elements on in PathView, a performance optimization trick that is common to use is to bind the smooth property of the Image element to the attached property PathView.view.moving. This means that the images are less pretty while moving, but smoothly transformed when stationary. There is no point spending processing power on smooth scaling when the view is in motion, as the user will not be able to see this anyway.




6.5.2. A Model from XML

As XML is an ubiquitous data format, QML provides the XmlListModel element that exposes XML data as a model. The element can fetch XML data locally or remotely and then processes the data using XPath expressions.

The example below demonstrates fetching images from an RSS flow. The source property refers to a remove location over HTTP, and the data is automatically downloaded.


[image: ../../_images/xmllistmodel-images.png]


When the data has been downloaded, it is processed into model items and roles. The query property is an XPath representing the base query for creating model items. In this example, the path is /rss/channel/item, so for every item tag, inside a channel tag, inside an RSS tag, a model item is created.

For every model item, a number of roles are extracted. These are represented by XmlRole elements. Each role is given a name, which the delegate can access through an attached property. The actual value of each such property is determined through the XPath query for each role. For instance, the title property corresponds to the title/string() query, returning the contents between the <title> and </title> tags.

The imageSource property is more interesting as it not only extracts a string from the XML, but also processes it. In the stream provided, every item contains an image, represented by an <img src= tag. Using the substring-after and substring-before XPath functions, the location of the image is extracted and returned. Thus the imageSource property can be used directly as the source for an Image element.

import QtQuick 2.5
import QtQuick.XmlListModel 2.0
import "../common"

Background {
    width: 300
    height: 480

    Component {
        id: imageDelegate

        Box {
            width: listView.width
            height: 220
            color: '#333'

            Column {
                Text {
                    text: title
                    color: '#e0e0e0'
                }
                Image {
                    width: listView.width
                    height: 200
                    fillMode: Image.PreserveAspectCrop
                    source: imageSource
                }
            }
        }
    }

    XmlListModel {
        id: imageModel

        source: "http://feeds.nationalgeographic.com/ng/photography/photo-of-the-day/"
        query: "/rss/channel/item"

        XmlRole { name: "title"; query: "title/string()" }
        XmlRole { name: "imageSource"; query: "substring-before(substring-after(description/string(), 'img src=\"'), '\"')" }
    }

    ListView {
        id: listView
        anchors.fill: parent
        model: imageModel
        delegate: imageDelegate
    }
}








6.5.3. Lists with Sections

Sometimes, the data in a list can be divided into sections. It can be as simple as dividing a list of contacts into sections under each letter of the alphabet or music tracks under albums. Using a ListView it is possible to divide a flat list into categories, providing more depth to the experience.


[image: ../../_images/listview-sections.png]


In order to use sections, the section.property and section.criteria must be setup. The section.property defines which property to use to divide the contents into sections. Here, it is important to know that the model must be sorted so that each section consists of continuous elements, otherwise, the same property name might appear in multiple locations.

The section.criteria can be set to either ViewSection.FullString or ViewSection.FirstCharacter. The first is the default value and can be used for models that have clear sections, for example tracks of music albums. The latter takes the first character of a property and means that any property can be used for this. The most common example being the last name of contacts in a phone book.

When the sections have been defined, they can be accessed from each item using the attached properties ListView.section, ListView.previousSection and ListView.nextSection. Using these properties, it is possible to detect the first and last item of a section and act accordingly.

It is also possible to assign a section delegate component to the section.delegate property of a ListView. This creates a section header delegate which is inserted before any items of a section. The delegate component can access the name of the current section using the attached property section.

The example below demonstrates the section concept by showing a list of space men sectioned after their nationality. The nation is used as the section.property. The section.delegate component, sectionDelegate, shows a heading for each nation, displaying the name of the nation. In each section, the names of the space men are shown using the spaceManDelegate component.

import QtQuick 2.5
import "../common"

Background {
    width: 300
    height: 290

    ListView {
        anchors.fill: parent
        anchors.margins: 20

        clip: true

        model: spaceMen

        delegate: spaceManDelegate

        section.property: "nation"
        section.delegate: sectionDelegate
    }

    Component {
        id: spaceManDelegate

        Item {
            width: ListView.view.width
            height: 20
            Text {
                anchors.left: parent.left
                anchors.verticalCenter: parent.verticalCenter
                anchors.leftMargin: 8
                font.pixelSize: 12
                text: name
                color: '#1f1f1f'
            }
        }
    }

    Component {
        id: sectionDelegate

        BlueBox {
            width: ListView.view.width
            height: 20
            text: section
            fontColor: '#e0e0e0'
        }
    }


    ListModel {
        id: spaceMen

        ListElement { name: "Abdul Ahad Mohmand"; nation: "Afganistan"; }
        ListElement { name: "Marcos Pontes"; nation: "Brazil"; }
        ListElement { name: "Alexandar Panayotov Alexandrov"; nation: "Bulgaria"; }
        ListElement { name: "Georgi Ivanov"; nation: "Bulgaria"; }
        ListElement { name: "Roberta Bondar"; nation: "Canada"; }
        ListElement { name: "Marc Garneau"; nation: "Canada"; }
        ListElement { name: "Chris Hadfield"; nation: "Canada"; }
        ListElement { name: "Guy Laliberte"; nation: "Canada"; }
        ListElement { name: "Steven MacLean"; nation: "Canada"; }
        ListElement { name: "Julie Payette"; nation: "Canada"; }
        ListElement { name: "Robert Thirsk"; nation: "Canada"; }
        ListElement { name: "Bjarni Tryggvason"; nation: "Canada"; }
        ListElement { name: "Dafydd Williams"; nation: "Canada"; }
    }
}








6.5.4. Tuning Performance

The perceived performance of a view of a model depends very much on the time needed to prepare new delegates. For instance, when scrolling downwards through a ListView, delegates are added just outside the view on the bottom and are removed just as they leave sight over the top of the view. This becomes apparent if the clip property is set to false. If the delegates takes too much time to initialize, it will become apparent to the user as soon as the view is scrolled too quickly.

To work around this issue you can tune the margins, in pixels, on the sides of a scrolling view. This is done using the cacheBuffer property. In the case described above, vertical scrolling, it will control how many pixels above and below the ListView that will contain prepared delegates. Combining this with asynchronously loading Image elements can, for instance, give the images time to load before they are brought into view.

Having more delegates sacrifices memory for a smoother experience and slightly more time to initialize each delegate. This does not solve the problem of complex delegates. Each time a delegate is instantiated, its contents is evaluated and compiled. This takes time, and if it takes too much time, it will lead to a poor scrolling experience. Having many elements in a delegate will also degrade the scrolling performance. It simply costs cycles to move many elements.

To remedy the two later issues, it is recommended to use Loader elements. These can be used to instantiate additional elements when they are needed. For instance, an expanding delegate may use a Loader to postpone the instantiation of its detailed view until it is needed. For the same reason, it is good to keep the amount of JavaScript to a minimum in each delegate. It is better to let them call complex pieced of JavaScript that reside outside each delegate. This reduces the time spent compiling JavaScript each time a delegate is created.






6.6. Summary

In this chapter, we have looked at models, views and delegates. For each data entry in a model, a view instantiates a delegate visualizing the data. This separates the data from the presentation.

A model can be a single integer, where the index variable is provided to the delegate. If a JavaScript array is used as model, the modelData variable represents the data of the current index of the array, while index holds the index. For more complex cases, where multiple values needs to be provided by each data item, a ListModel populated with ListElement items is a better solution.

For static models, a Repeater can be used as the view. It is easy to combine it with a positioner such as Row, Column, Grid or Flow to build user interface parts. For dynamic or large data models, a view such as ListView or GridView are more appropriate. These create delegate instances on the fly as they are needed, reducing the number of elements live in the scene at once.

The delegates used in the views can be static items with properties bound to data from the model, or they can be dynamic, with states depending on if they are in focus or not. Using the onAdd and onRemove signals of the view, they can even be animated as they appear and disappear.
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4. Ein Schneller Einstieg

Autor da secção: jolly-jump [https://github.com/jolly-jump]


Nota

Zuletzt aktualisiert: fevereiro 13, 2018 at 22:12 CET

Der Quellcode für dieses Kapitel befindet sich im assets Verzeichnis.



Dieses Kapitel gibt einen Überblick über QML, die Beschreibungssprache
für das Benutzerinterface in Qt 5. Wir diskutieren die QML Syntax, die
aus einer baumartigen Struktur von Elementen besteht und es folgt ein
Überblick über die wichtigsten Grundelemente. Später schauen wir uns
kurz an, wie man eigene Elemente erstellt, so genannte “components”
und wie man Elemente verändert mit Hilfe von Manipulationen von
Eigenschaften.  Zum Schluss behandeln wir Layouts, die Elemente
arrangieren können und in welche Elemente der Benutzer Eingaben machen
kann.


4.1. QML Syntax

QML ist eine Auszeichnungs- oder Beschreibungssprache mit deren Hilfe
das Benutzerinterface deiner Anwendung beschrieben wird. Das
Benutzerinterface wird durch kleine Elemente beschrieben, die in
größere Komponenten zusammengefasst werden.  QML beschreibt dabei das
Aussehen und das Verhalten der Interfaceelemente. Das
Benutzerinterface kann dann mit Hilfe von JavaScript Code erweitert
werden um einfache oder komplexe Programmlogik hinzuzufügen.  Diese
Art und Weise folgt dem HTML-JavaScript Muster, aber QML ist im
Gegensatz zu HTML von Grund auf darauf ausgelegt,
Benutzerschnittstellen statt Text-Dokumente zu beschreiben.

In ihrer einfachsten Form ist QML eine Hierarchie von
Elementen. Kinder-Elemente erben das Koordinatensystem von ihren
Eltern. Eine x,y Koordinate ist immer relativ zum Elternelement.


[image: ../../_images/scene.png]


Beginnen wir mit einem einfachen Beispiel einer QML-Datei um die zu HTML unterschiedliche Syntax zu erklären:

// RectangleExample.qml

import QtQuick 2.5

// The root element is the Rectangle
Rectangle {
    // name this element root
    id: root

    // properties: <name>: <value>
    width: 120; height: 240

    // color property
    color: "#4A4A4A"

    // Declare a nested element (child of root)
    Image {
        id: triangle

        // reference the parent
        x: (parent.width - width)/2; y: 40

        source: 'assets/triangle_red.png'
    }

    // Another child of root
    Text {
        // un-named element

        // reference element by id
        y: triangle.y + triangle.height + 20

        // reference root element
        width: root.width

        color: 'white'
        horizontalAlignment: Text.AlignHCenter
        text: 'Triangle'
    }
}






	Der import Befehl importiert ein Modul in einer speziellen Version. Grundsätzlich ist der Import von QtQuick 2.0 ein guter Start.

	Einzeilige Kommentare kann man mit Hilfe von //  oder mehrzeilige mit Hilfe von  /* */ eingeben, genau wir in C/C++ und JavaScript

	Jede QML-Datei benötigt genau ein Wurzelelement wie in HTML (hier: “Rectangle”)

	Ein Element wird über sein Typ gefolgt von { } definiert.

	Elemente können Eigenschaften haben, die in der Form name : value geschrieben werden.

	Beliebige Elemente innerhalb eines QML-Dokuments können über ihre id (ein Bezeichner ohne Anführungszeichen) angesprochen werden.

	Elemente können verschachtelt werden, was dann bedeutet, dass ein Elternelement Kindelemente hat. Die Elternelemente kann man über das Schlüsselword parent ansprechen




Dica

Often you want to access a particular element by id or a parent element using the parent keyword. So it’s good practice to name your root element “root” using id: root. Then you don’t have to think about how the root element is named in your QML document.




Dica

Jetzt kann man das Beispiel mit der Qt Quick runtime von der Kommandozeile starten



    $ $QTDIR/<version>/<target>/bin/qmlscene RectangleExample.qml

wobei du *$QTDIR* durch den Pfad zu deiner Qt installation ersetzen musst, *<version* durch die Version von Qt und *<target>* z.B durch *gcc_64*. Die *qmlscene* Date initialisiert die Runtim und interpretiert die angegebene QML Datei

In Qt Creator kannst du das ensprechende Projekt öffnen und das Dokument ``RectangleExample.qml`` ausführen.






4.1.1. Eigenschaften

Elemente werden über deren Elementname deklariert, aber erst die
Benutzung der Eigenschaften oder durch selbst erstellte Eigenschaften
sind Elemente richtig definiert. Eine Eigenschaft ist eine einfaches
Schlüssel-Wert Paar, z.B.

width : 100
text: 'Hallo'
color: '#FF0000'





Eine Eigenschaft hat einen wohldefinierten Datentyp und kann einen
Initialwert zugewiesen bekommen (Im Beispiel jeweils die rechte
Seite).

    Text {
        // (1) identifier
        id: thisLabel

        // (2) set x- and y-position
        x: 24; y: 16

        // (3) bind height to 2 * width
        height: 2 * width

        // (4) custom property
        property int times: 24

        // (5) property alias
        property alias anotherTimes: thisLabel.times

        // (6) set text appended by value
        text: "Greetings " + times

        // (7) font is a grouped property
        font.family: "Ubuntu"
        font.pixelSize: 24

        // (8) KeyNavigation is an attached property
        KeyNavigation.tab: otherLabel

        // (9) signal handler for property changes
        onHeightChanged: console.log('height:', height)

        // focus is need to receive key events
        focus: true

        // change color based on focus value
        color: focus?"red":"black"
    }





Schauen wir uns die verschiedenen Eigenheiten von Eigenschaften an:


	id ist ein sehr spezieller Wert mit dem man innerhalb einer
QML-Datei (“document”) genau ein Element ansteuern
(“referenzieren”) kann. Die id ist nicht vom Typ einer
Zeichenkette sondern ein Bezeichner und Teil der QML Syntax. Eine
id muss einmalig in einem Dokument sein und ihm kann nicht ein
anderer Wert zugewiesen werden, noch kann nach ihm gesucht
werden. (Es benimmt sich eher wie ein Zeiger aus der C++-Welt).



	Eine Eigenschaft kann auf einen Wert gesetzt werden, abhängig von
seinem Datentyp. Wenn kein Wert für eine Eigenschaft vergeben
wurde, wird vom System ein erstmaliger Wert gewählt. Man muss die
Dokumentation des jeweiligen Elements anschauen um diesen
Initialwert herauszubekommen.



	Eine Eigenschaft kann von einer oder vielen anderen Eigenschaften
abhängen.  Das nennt man binding (“Bindung”). Eine gebundene
Eigenschaft wird immer aktualisiert wenn sich die andere
Eigenschaft (von der der Wert abhängt) ändert. Man kann es sich
wie einen Vertrag vorstellen, in diesem Beispiel ist die Höhe
height immer zwei mal der Breite width.



	Eigene Eigenschaft kann man zu einem Element hinzufügen in dem man
den Bezeichner property gefolgt von dem Datentyp, dem Namen
der Eigenschaft und - wenn man will - einem initialen Wert
verwendet (property <type> <name> : <value>). Falls kein Wert
angegeben wird, wählt das System einen.


Nota

You can also declare one property to be the default
property if no property name is given by prepending the
property declaration with the default keyword. This
is used for example when you add child elements, the
child elements are added automatically to the default
property children of type list if they are visible
elements.





	Eine weitere Möglichkeit, Eigenschaften zu definieren ist über das
Schlüsselwort alias (property alias <name> :
<reference>). Das alias Schlüsselwort erlaubt uns eine
Eigenschaft eines anderen Elements oder ein Element selbst
weiterzuleiten, d.h. hier verwendbar zu machen. Wir werden diese
Technik später nutzen, wenn wir Komponenten definiteren, die
innere Eigenschaften besitzen, die wir aber im Wurzelelement
verwenden wollen. Ein property alias braucht keinen Typ, denn
es verwendet den Typ der Referenzeigenschaft oder des
Referenzelements.



	Die text-Eigenschaft hängt hier von der erfundenen Eigenschaft
times ab, welche vom Typ int (Ganzzahl) ist. Der
int-Wert wird dann automatisch in einen string-Typ
konvertiert. Der Ausdruck ist ein Beispiel einer Bindung und hat
zur Folge, dass immer automatisch wenn times sich ändert, der
Text geändert wird.



	Einige Eigenschaften können gruppiert werden. Dieses Feature wird
verwendet, wenn eine Eigenschaft strukturiert werden soll und
verwandte Eigenschaften gruppiert werden sollen. Gruppen von
Eigenschaften kann man auch so schreiben: font { family:
"Ubuntu"; pixelSize: 24 }.



	Einige Eigenschaften sind an ein Element geheftetet. Das macht man
für globale Elemente, die nur einmalig in der Applikation
vorkommen (z.B: Tastatureingaben). Die Syntax dazu ist
<Element>.<property>: <value>.



	Für jede Eigenschaft kann man signal handler zur Verfügung
stellen. Diese Funktion wird dann aufgerufen, sobald die
Eigenschaft sich ändert. Hier beispielsweise wird man über die
eingebaute Funktion console.log immer dann informiert, wenn
sich de Höhe ändert.






Aviso

Eine Element-ID sollte man nur innerhalb seines Dokuments
(also der aktuellen Datei) verwenden. QML erlaubt zwar
mit dem Mechanismus “dynamic-scoping”, dass später
geladene Dokumente die IDs von früher geladenen
Dokumenten überschreiben und entspricht so etwas wie
globalen Variablen. Leider führt das häufig zu sehr
schlecht funktionierendem Code, bei dem der Ausgang von
der Reihenfolge der Ausführung abhängt. Daher sollte man
eine ID von außerhalb nicht direkt verwenden, sondern
besser ein Element, dass man nach außen exporieren will
über Eigenschaften des Wurzelelements des aktuellen
Dokuments zur Verfügung stellen.






4.1.2. Scripting

QML and JavaScript (also known as ECMAScript) are best friends. In the JavaScript chapter we will go into more detail on this symbiosis. Currently we just want to make you aware about this relationship.

    Text {
        id: label

        x: 24; y: 24

        // custom counter property for space presses
        property int spacePresses: 0

        text: "Space pressed: " + spacePresses + " times"

        // (1) handler for text changes
        onTextChanged: console.log("text changed to:", text)

        // need focus to receive key events
        focus: true

        // (2) handler with some JS
        Keys.onSpacePressed: {
            increment()
        }

        // clear the text on escape
        Keys.onEscapePressed: {
            label.text = ''
        }

        // (3) a JS function
        function increment() {
            spacePresses = spacePresses + 1
        }
    }






	The text changed handler onTextChanged prints the current text every-time the text changed due to a space-bar key pressed

	When the text element receives the space-bar key (because the user pressed the space-bar on the keyboard) we call a JavaScript function increment().

	Definition of a JavaScript function in the form of function <name>(<parameters>) { ... }, which increments our counter spacePressed. Every time spacePressed is incremented, bound properties will also be updated.




Nota

The difference between the QML : (binding) and the JavaScript = (assignment) is, that the binding is a contract and keeps true over the lifetime of the binding, whereas the JavaScript assignment (=) is a one time value assignment.
The lifetime of a binding ends, when a new binding is set to the property or even when a JavaScript value is assigned is to the property. For example a key handler setting the text property to an empty string would destroy our increment display:

Keys.onEscapePressed: {
    label.text = ''
}





After pressing escape, pressing the space-bar will not update the display anymore as the previous binding of the text property (text: “Space pressed: ” + spacePresses + ” times”) was destroyed.

When you have conflicting strategies to change a property as in this case (text updated by a change to a property increment via a binding and text cleared by a JavaScript assignment) then you can’t use bindings! You need to use assignment on both property change paths as the binding will be destroyed by the assignment (broken contract!).








4.2. Basiselemente

Elemente kann man in visuelle und nicht-visuelle Elemente
gruppieren. Ein visuelles Elemente (wie z.B. Rectangle) hat eine
Geometrie und wird üblicherweise auf einem Gebiet des Bildschirms
angezeigt. Ein nicht-visuelles Elemente (wie z.B. ein Timer)
bringt allgemeine Funktionalität mit sich, die man oft verwendet um
die visuellen Elemente zu manipulieren.

Wir fokussieren uns hier mal auf die fundamentalen visuellen Elemente,
wie Item, Rectangle, Text, Image und MouseArea.


4.2.1. Das Item Element

Item ist das Basiselement für alle visuellen Elemente weil alle
anderen visuellen Elemente von ihm abstammen. Es zeichnet zunächst
nichts selbst auf den Schirm, aber es definiert Eigenschaften, die für
alle visuellen Elemente gelten:







	Gruppe
	Eigenschaften




	Geometrie
	x und y definieren die Position oben-links,
width und height stehen für die Ausmaße des Elements
und z beschreibt wie die Elemente gestapelt werden und
welches vor anderen angezeigt wird.


	Layout
	anchors (left, right, top, bottom, vertical und
horizontal center) werden verwendet um die Elemente relativ
zu anderen Elementen mit deren jeweiligen Rändern
(margins) zu positionieren


	Tastatur
	Die angehefteten Key und KeyNavigation Eigenschaften
verwalten die Tasten und die Eingabeeigenschaft focus
macht die Tastenverwendung überhaupt erst möglich.


	Transformationen
	scale und rotate transformieren wie der Name es
sagt, generell ist die transform-Eigenschaftenliste für
x,y,z beliebige Transformation um deren
transformOrigin Punkt zuständig


	Sichtbarkeit
	opacity verwaltet die Transparenz, visible um
Elemente anzuzeigen/zu verbergen, clip um die
Zeichentätigkeit auf die Elementmaße einzugrenzen und
smooth um die Qualität der Darstellung zu verbessern


	Zustandsdefinition
	Die states-Eigenschaftenliste mit der unterstützten Liste
von Zuständen und dem aktuellen Zustand in der Eigenschaft
state, ebenso wie man Übergänge  mit Hilfe der
Eigenschaftenliste transistions animieren kann.





Um die verschiedenen Eigenschaften besser zu verstehen, werden wir sie
im Zusammenhang mit einem Element genauer vorstellen. Merke dir, dass
dieses Basiseigenschaften in jedem sichtbaren Element vorhanden sind
und überall dort gleich funktionieren.


Nota

Das Item-Element wird oft als Container für andere Elemente
verwendet, genau wie das div-Element in HTML.






4.2.2. Das Rectangle Element

Das Rechteckelement Rectangle beerbt und erweitert das Item
Element und fügt eine Füllfarbe und Ränder hinzu über border.color
and border.width. Für abgerundete Ecken ist die radius
Eigenschaft zuständig.

    Rectangle {
        id: rect1
        x: 12; y: 12
        width: 76; height: 96
        color: "lightsteelblue"
    }
    Rectangle {
        id: rect2
        x: 112; y: 12
        width: 76; height: 96
        border.color: "lightsteelblue"
        border.width: 4
        radius: 8
    }






[image: ../../_images/rectangle2.png]



Nota

Gültige Farbwerte sind Farben der SVG Farbnamen (siehe
http://www.w3.org/TR/css3-color/#svg-color). Man kann Farben in
QML auf verschiedene Weisen produzieren, der übliche Weg ist ein
RGB-Farbwert (‘#FF4444’) oder über einen englischen Farbnamen
(z.B. ‘white’).



Neben der Füllfarbe und einem Rand unterstützt ein Rechteck noch
selbsterstellte Gradienten.

    Rectangle {
        id: rect1
        x: 12; y: 12
        width: 176; height: 96
        gradient: Gradient {
            GradientStop { position: 0.0; color: "lightsteelblue" }
            GradientStop { position: 1.0; color: "slategray" }
        }
        border.color: "slategray"
    }






[image: ../../_images/rectangle3.png]


Ein Gradient wird über eine Folge von Gradientenmarken
GradientStop definiert. Jede Marke hat eine Position und eine
Farbe. Die Position legt die Marke auf der y-Achse fest (0=oben,
1=unten) und color die Farbe an dieser Position.


Nota

Ein Rechteck mit keiner Höhe/Breite wird nicht sichrbar sein. Das
kann oft dann passieren, wenn man mehrere Rechtecksbreiten
(-höhen) von einander abhängig definiert hat und irgendetwas in
der Logik des Zusammenbaus schief ging.




Nota

Man kann keinen schrägen Gradienten erzeugen. Dann ist es besser,
vordefinierte Bilder zu verwenden. Man könnte zwar die Rechtecke
mit Gradient drehen, aber dann stimmt die Geometrie des gedrehten
Rechtecks wird nicht geändert und wird daher zu Verwirrung führen,
weil die Geometrie des Elements dann nicht mehr mit der Geometrie
der sichtbaren Fläche zusammenpasst. Der Autor meint, es sei
besser, vordesignte Gradientenbilder zu verwenden.






4.2.3. Text Element

To display text, you can use the Text element. Its most notable property is the text property of type string. The element calculates its initial width and height based on the given text and the font used. The font can be influenced using the font property group (e.g. font.family, font.pixelSize, ...). To change the color of the text just use the color property.

    Text {
        text: "The quick brown fox"
        color: "#303030"
        font.family: "Ubuntu"
        font.pixelSize: 28
    }












[image: ../../_images/text.png]


Text can be aligned to each side and the center using the horizontalAlignment and verticalAlignment properties. To further enhance the text rendering you can use the style and styleColor property , which allows you render the text in outline, raised and sunken mode. For longer text you often want to define a break position like A very ... long text, this can be achieved using the elide property. The elide property allows you to set the elide position to the left, right or middle of your text. In case you don’t want the ‘...’ of the elide mode to appear but still want to see the full text you can also wrap the text using the wrapMode property (works only when width is explicitly set):

Text {
    width: 40; height: 120
    text: 'A very long text'
    // '...' shall appear in the middle
    elide: Text.ElideMiddle
    // red sunken text styling
    style: Text.Sunken
    styleColor: '#FF4444'
    // align text to the top
    verticalAlignment: Text.AlignTop
    // only sensible when no elide mode
    // wrapMode: Text.WordWrap
}





A Text element only displays the given text. It does not render any background decoration. Besides the rendered text the Text element is transparent. It’s part of your overall design to provide a sensible background to the text element.


Nota

Be aware a Text initial width (height) is depending on the text string and on the font set. A Text element with no width set and no text will not be visible, as the initial width will be 0.




Nota

Often when you want to layout Text elements you need to differentiate between aligning the text inside the Text element boundary box or to align the element boundary box itself. In the former you want to use the horizontalAlignment and verticalAlignment properties and in the later case you want to manipulate the element geometry or use anchors.






4.2.4. Image Element

An Image element is able to display images in various formats (e.g. PNG, JPG, GIF, BMP, WEBP). For the full list of supported image formats, please consult the Qt documentation. Besides the obvious source property to provide the image URL it contains a fillMode which controls the resizing behavior.

    Image {
        x: 12; y: 12
        // width: 72
        // height: 72
        source: "assets/triangle_red.png"
    }
    Image {
        x: 12+64+12; y: 12
        // width: 72
        height: 72/2
        source: "assets/triangle_red.png"
        fillMode: Image.PreserveAspectCrop
        clip: true
    }






[image: ../../_images/image.png]



Nota

A URL can be a local path with forward slashes ( ”./images/home.png” ) or a web-link (e.g. “http://example.org/home.png”).




Nota

Image elements using PreserveAspectCrop should also enable the clipping to avoid image data being rendered outside the Image boundaries. By default clipping is disabled (clip : false). You  need to enable clipping (clip : true) to constrain the painting to the elements bounding rectangle. This can be used on any visual element.




Dica

Using C++ you are able to create your own image provider using QQmlImageProvider [http://doc.qt.io/qt-5//qqmlimageprovider.html]. This allows you to create images on the fly and threaded image loading.






4.2.5. MouseArea Element

To interact with these elements you often will use a MouseArea. It’s a rectangular invisible item in where you can capture mouse events. The mouse area is often used together with a visible item to execute commands when the user interacts with the visual part.

    Rectangle {
        id: rect1
        x: 12; y: 12
        width: 76; height: 96
        color: "lightsteelblue"
        MouseArea {
            id: area
            width: parent.width
            height: parent.height
            onClicked: rect2.visible = !rect2.visible
        }
    }

    Rectangle {
        id: rect2
        x: 112; y: 12
        width: 76; height: 96
        border.color: "lightsteelblue"
        border.width: 4
        radius: 8
    }











	
[image: ../../_images/mousearea1.png]
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Nota

This is an important aspect of Qt Quick, the input handling is separated from the visual presentation. By this it allows you to show the user an interface element, but the interaction area can be larger.








4.3. Components

A component is a reusable element and QML provides different ways to create components. Currently we will look only at the simplest form - a file based component. A file based component is created by placing a QML element in a file and give the file an element name (e.g. Button.qml). You can use the component like every other element from the QtQuick module, in our case you would use this in your code as Button { ... }.

For example, let’s create a rectangle containing a text componenet and a mouse area. This resembles a simple button and doesn’t need to be more complicated for our purposes.

    Rectangle { // our inlined button ui
        id: button
        x: 12; y: 12
        width: 116; height: 26
        color: "lightsteelblue"
        border.color: "slategrey"
        Text {
            anchors.centerIn: parent
            text: "Start"
        }
        MouseArea {
            anchors.fill: parent
            onClicked: {
                status.text = "Button clicked!"
            }
        }
    }

    Text { // text changes when button was clicked
        id: status
        x: 12; y: 76
        width: 116; height: 26
        text: "waiting ..."
        horizontalAlignment: Text.AlignHCenter
    }





The UI will look similar to this. On the left the UI in the initial state, on the right after the button has been clicked.
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Our task is now to extract the button UI in a reusable component. For this we shortly think about a possible API for our button. You can do this by imagining how someone else should use your button. Here’s what I came up with:

// minimal API for a button
Button {
    text: "Click Me"
    onClicked: { // do something }
}





I would like to set the text using a text property and to implement my own click handler. Also I would expect the button to have a sensible initial size, which I can overwrite (e.g. with width: 240 for example).

To achieve this we create a Button.qml file and copy our button UI inside. Additionally we need to export the properties a user might want to change on the root level.

// Button.qml

import QtQuick 2.5

Rectangle {
    id: root
    // export button properties
    property alias text: label.text
    signal clicked

    width: 116; height: 26
    color: "lightsteelblue"
    border.color: "slategrey"

    Text {
        id: label
        anchors.centerIn: parent
        text: "Start"
    }
    MouseArea {
        anchors.fill: parent
        onClicked: {
            root.clicked()
        }
    }
}





We have exported the text and clicked signal on the root level. Typically we name our root element root to make the referencing easier. We use the alias feature of QML, which is a way to export properties inside nested QML elements to the root level and make this available for the outside world. It is important to know, that only the root level properties can be accessed from outside this file by other components.

To use our new Button element we can simply declare it in our file. So the earlier example will become a little bit simplified.

    Button { // our Button component
        id: button
        x: 12; y: 12
        text: "Start"
        onClicked: {
            status.text = "Button clicked!"
        }
    }

    Text { // text changes when button was clicked
        id: status
        x: 12; y: 76
        width: 116; height: 26
        text: "waiting ..."
        horizontalAlignment: Text.AlignHCenter
    }





Now you can use as many buttons as you like in your UI by just using Button { ... }. A real button could be more complex, e.g providing feedback when clicked or showing a nicer decoration.


Nota

Personally you could even go a step further and use an item as a root element. This prevents users to change the color of our designed button, and provides us more control about the exported API. The target should be to export a minimal API. Practically this means we would need to replace the root Rectangle with an Item and make the rectangle a nested element in the root item.







Item {
    id: root
    width: 116; height: 26

    property alias text: label.text
    signal clicked

    Rectangle {
        anchors.fill parent
        color: "lightsteelblue"
        border.color: "slategrey"
    }
    ...
}







With this technique, it is easy to create a whole series of reusable components.




4.4. Simple Transformations

A transformation manipulates the geometry of an object. QML Items can in general be translated, rotated and scaled. There is a simple form of these operations and a more advanced way.

Let’s start with the simple transformations. Here is our scene as our starting point.

A simple translation is done via changing the x,y position. A rotation is done using the rotation property. The value is provided in degrees (0 .. 360). A scaling is done using the scale property and a value <1 means the element is scaled down and >1 means the element is scaled up. The rotation and scaling does not change your geometry. The items x,y and width/height haven’t changed. Just the painting instructions are transformed.

Before we show off the example I would like to introduce a little helper: The ClickableImage element. The ClickableImage is just an image with a mouse area. This brings up a useful rule of thumb - if you have copied a chunk of code three times, extract it into a component.

// ClickableImage.qml

// Simple image which can be clicked

import QtQuick 2.5

Image {
    id: root
    signal clicked

    MouseArea {
        anchors.fill: parent
        onClicked: root.clicked()
    }
}






[image: ../../_images/objects.png]


We use our clickable image to present three objects (box, circle, triangle). Each object performs a simple transformation when clicked. Clicking the background will reset the scene.

// transformation.qml


import QtQuick 2.5

Item {
    // set width based on given background
    width: bg.width
    height: bg.height

    Image { // nice background image
        id: bg
        source: "assets/background.png"
    }

    MouseArea {
        id: backgroundClicker
        // needs to be before the images as order matters
        // otherwise this mousearea would be before the other elements
        // and consume the mouse events
        anchors.fill: parent
        onClicked: {
            // reset our little scene
            circle.x = 84
            box.rotation = 0
            triangle.rotation = 0
            triangle.scale = 1.0
        }
    }

    ClickableImage {
        id: circle
        x: 84; y: 68
        source: "assets/circle_blue.png"
        antialiasing: true
        onClicked: {
            // increase the x-position on click
            x += 20
        }
    }

    ClickableImage {
        id: box
        x: 164; y: 68
        source: "assets/box_green.png"
        antialiasing: true
        onClicked: {
            // increase the rotation on click
            rotation += 15
        }
    }

    ClickableImage {
        id: triangle
        x: 248; y: 68
        source: "assets/triangle_red.png"
        antialiasing: true
        onClicked: {
            // several transformations
            rotation += 15
            scale += 0.05
        }
    }

    function _test_transformed() {
        circle.x += 20
        box.rotation = 15
        triangle.scale = 1.2
        triangle.rotation = -15
    }

    function _test_overlap() {
        circle.x += 40
        box.rotation = 15
        triangle.scale = 2.0
        triangle.rotation = 45
    }

}
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The circle increments the x-position on each click and the box will rotate on each click. The triangle will rotate and scale the image down on each click, to demonstrate a combined transformation. For the scaling and rotation operation we set antialiasing: true to enable anti-aliasing, which is switched off (same as the clipping property clip) for performance reasons.  In your own work, when you see some rasterized edges in your graphics, then you should probably switch smooth on.


Nota

To achieve better visual quality when scaling images it is recommended to scale images down instead of up. Scaling an image up with a larger scaling factor will result into scaling artifacts (blurred image). When scaling an image you should consider using antialiasing : true to enable the usage of a higher quality filter.



The background MouseArea covers the whole background and resets the object values.


Nota

Elements which appear earlier in the code have a lower stacking order (called z-order). If you click long enough on circle you will see it moves below box. The z-order can also be manipulated by the z-property of an Item.


[image: ../../_images/objects_overlap.png]


This is because box appears later in the code. The same applies also to mouse areas. A mouse area later in the code will overlap (and thus grab the mouse events) of a mouse area earlier in the code.

Please remember: The order of elements in the document matters.






4.5. Positioning Elements

There are a number of QML elements used to position items. These are called positioners and the following are provided in the QtQuick module Row, Column, Grid and Flow. They can be seen showing the same contents in the illustration below.


Nota

Before we go into details, let me introduce some helper elements. The red, blue, green, lighter and darker squares. Each of these components contains a 48x48 pixels colorized rectangle. As reference here is the source code for the RedSquare:

// RedSquare.qml

import QtQuick 2.5

Rectangle {
    width: 48
    height: 48
    color: "#ea7025"
    border.color: Qt.lighter(color)
}





Please note the use of Qt.lighter(color) to produce a lighter border color based on the fill color. We will use these helpers in the next examples to make the source code more compact and hopefully readable. Please remember, each rectangle is initial 48x48 pixels.



The Column element arranges child items into a column by stacking them on top of each other. The spacing property can be used to distance each of the child elements from each other.
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// column.qml

import QtQuick 2.5

DarkSquare {
    id: root
    width: 120
    height: 240

    Column {
        id: row
        anchors.centerIn: parent
        spacing: 8
        RedSquare { }
        GreenSquare { width: 96 }
        BlueSquare { }
    }
}





The Row element places its child items next to each other, either from the left to the right, or from the right to the left, depending on the layoutDirection property. Again, spacing is used to separate child items.


[image: ../../_images/row.png]


// row.qml

import QtQuick 2.5

BrightSquare {
    id: root
    width: 400; height: 120

    Row {
        id: row
        anchors.centerIn: parent
        spacing: 20
        BlueSquare { }
        GreenSquare { }
        RedSquare { }
    }
}





The Grid element arranges its children in a grid, by setting the rows and columns properties, the number or rows or columns can be constrained. By not setting either of them, the other is calculated from the number of child items. For instance, setting rows to 3 and adding 6 child items will result in 2 columns. The properties flow and layoutDirection are used to control the order in which the items are added to the grid, while spacing controls the amount of space separating the child items.


[image: ../../_images/grid.png]


// grid.qml

import QtQuick 2.5

BrightSquare {
    id: root
    width: 160
    height: 160

    Grid {
        id: grid
        rows: 2
        columns: 2
        anchors.centerIn: parent
        spacing: 8
        RedSquare { }
        RedSquare { }
        RedSquare { }
        RedSquare { }
    }

}





The final positioner is Flow. It adds its child items in a flow. The direction of the flow is controlled using flow and layoutDirection. It can run sideways or from the top to the bottom. It can also run from left to right or in the opposite direction. As the items are added in the flow, they are wrapped to form new rows or columns as needed. In order for a flow to work, it must have a width or a height. This can be set either directly, or though anchor layouts.


[image: ../../_images/flow.png]


// flow.qml

import QtQuick 2.5

BrightSquare {
    id: root
    width: 160
    height: 160

    Flow {
        anchors.fill: parent
        anchors.margins: 20
        spacing: 20
        RedSquare { }
        BlueSquare { }
        GreenSquare { }
    }
}





An element often used with positioners is the Repeater. It works like a for-loop and iterates over a model. In the simplest case a model is just a value providing the amount of loops.


[image: ../../_images/repeater.png]


// repeater.qml

import QtQuick 2.5

DarkSquare {
    id: root
    width: 252
    height: 252
    property variant colorArray: ["#00bde3", "#67c111", "#ea7025"]


    Grid{
        anchors.fill: parent
        anchors.margins: 8
        spacing: 4
        Repeater {
            model: 16
            Rectangle {
                width: 56; height: 56
                property int colorIndex: Math.floor(Math.random()*3)
                color: root.colorArray[colorIndex]
                border.color: Qt.lighter(color)
                Text {
                    anchors.centerIn: parent
                    color: "#f0f0f0"
                    text: "Cell " + index
                }
            }
        }
    }
}





In this repeater example, we use some new magic. We define our own color property, which we use as an array of colors. The repeater creates a series of rectangles (16, as defined by the model). For each loop he creates the rectangle as defined by the child of the repeater. In the rectangle we chose the color by using JS math functions Math.floor(Math.random()*3). This gives us a random number in the range from 0..2, which we use to select the color from our color array. As noted earlier, JavaScript is a core part of Qt Quick, as such the standard libraries are available for us.

A repeater injects the index property into the repeater. It contains the current loop-index. (0,1,..15). We can use this to make our own decisions based on the index, or in our case to visualize the current index with the Text element.


Nota

More advanced handling of larger models and kinetic views with dynamic delegates is covered in an own model-view chapter. Repeaters are best used when having a small amount of static data to be presented.






4.6. Layout Items


Por fazer

do we need to remove all uses of anchors earlier?



QML provides a flexible way to layout items using anchors. The concept of anchoring is part of the Item fundamental properties and available to all visual QML elements. An anchors acts like a contract and is stronger than competing geometry changes. Anchors are expressions of relativeness, you always need a related element to anchor with.


[image: ../../_images/anchors.png]


An element has 6 major anchor lines (top, bottom, left, right, horizontalCenter, verticalCenter). Additional there is the baseline anchor for text in Text elements. Each anchor line comes with an offset. In the case of top, bottom, left and right they are called margins. For horizontalCenter, verticalCenter and baseline they are called offsets.


[image: ../../_images/anchorgrid.png]



	An element fills a parent element


        GreenSquare {
            BlueSquare {
                width: 12
                anchors.fill: parent
                anchors.margins: 8
                text: '(1)'
            }
        }










	An element is left aligned to the parent


        GreenSquare {
            BlueSquare {
                width: 48
                y: 8
                anchors.left: parent.left
                anchors.leftMargin: 8
                text: '(2)'
            }
        }










	An element left side is aligned to the parents right side


        GreenSquare {
            BlueSquare {
                width: 48
                anchors.left: parent.right
                text: '(3)'
            }
        }










	Center aligned elements. Blue1 is horizontal centered  on the parent. Blue2 is also horizontal centered but on Blue1 and it’s top is aligned to the Blue1 bottom line.


        GreenSquare {
            BlueSquare {
                id: blue1
                width: 48; height: 24
                y: 8
                anchors.horizontalCenter: parent.horizontalCenter
            }
            BlueSquare {
                id: blue2
                width: 72; height: 24
                anchors.top: blue1.bottom
                anchors.topMargin: 4
                anchors.horizontalCenter: blue1.horizontalCenter
                text: '(4)'
            }
        }










	An element is centered on a parent element


        GreenSquare {
            BlueSquare {
                width: 48
                anchors.centerIn: parent
                text: '(5)'
            }
        }










	An element is centered with an left-offset on a parent element using horizontal and vertical center lines


        GreenSquare {
            BlueSquare {
                width: 48
                anchors.horizontalCenter: parent.horizontalCenter
                anchors.horizontalCenterOffset: -12
                anchors.verticalCenter: parent.verticalCenter
                text: '(6)'
            }
        }













Nota

Our squares have been enhanced to enable dragging. Try the example and drag around some squares. You will see that (1) can’t be dragged as it’s anchored on all sides, sure you can drag the parent of (1) as it’s not anchored at all. (2) can be vertically dragged as only the left side is anchored. Similar applies to (3). (4) can only be dragged vertically as both squares are horizontal centered. (5) is centered on the parent and as such can’t be dragged, similar applies to (7). Dragging an element means changing their x,y position. As anchoring is stronger than geometry changes such as x,y, dragging is restricted by the anchored lines. We will see this effect later when we discuss animations.






4.7. Input Elements

We have already used the MouseArea as a mouse input element. Next, we’ll  focus on keyboard input. We start off with the text editing elements: TextInput and TextEdit.


4.7.1. TextInput

The TextInput allows the user to enter a line of text. The element supports input constraints such as validator, inputMask, and echoMode.

// textinput.qml

import QtQuick 2.5

Rectangle {
    width: 200
    height: 80
    color: "linen"

    TextInput {
        id: input1
        x: 8; y: 8
        width: 96; height: 20
        focus: true
        text: "Text Input 1"
    }

    TextInput {
        id: input2
        x: 8; y: 36
        width: 96; height: 20
        text: "Text Input 2"
    }
}






[image: ../../_images/textinput.png]


The user can click inside a TextInput to change the focus. To support switching the focus by keyboard, we can use the KeyNavigation attached property.

// textinput2.qml

import QtQuick 2.5

Rectangle {
    width: 200
    height: 80
    color: "linen"

    TextInput {
        id: input1
        x: 8; y: 8
        width: 96; height: 20
        focus: true
        text: "Text Input 1"
        KeyNavigation.tab: input2
    }

    TextInput {
        id: input2
        x: 8; y: 36
        width: 96; height: 20
        text: "Text Input 2"
        KeyNavigation.tab: input1
    }
}





The KeyNavigation attached property supports a preset of navigation keys where an element id is bound to switch focus on the given key press.

A text input element comes with no visual presentation besides a blinking cursor and the entered text. For the user to be able to recognize the element as an input element it needs some visual decoration, for example a simple rectangle. When placing the TextInput inside an element you need make sure you export the major properties you want others be able to access.

We move this piece of code into our own component called TLineEditV1 for reuse.

// TLineEditV1.qml

import QtQuick 2.5

Rectangle {
    width: 96; height: input.height + 8
    color: "lightsteelblue"
    border.color: "gray"

    property alias text: input.text
    property alias input: input

    TextInput {
        id: input
        anchors.fill: parent
        anchors.margins: 4
        focus: true
    }
}






Nota

If you want to export the TextInput completely, you can export the element by using property alias input: input. The first input is the property name, where the 2nd input is the element id.



We rewrite our KeyNavigation example with the new TLineEditV1 component.

Rectangle {
    ...
    TLineEditV1 {
        id: input1
        ...
    }
    TLineEditV1 {
        id: input2
        ...
    }
}






[image: ../../_images/textinput3.png]


And try the tab key for navigation. You will experience the focus does not change to input2. The simple use of focus:true is not sufficient. The problem arises, that the focus was transferred to the input2 element the top-level item inside the TlineEditV1 (our Rectangle) received focus and did not forward the focus to the TextInput. To prevent this QML offers the FocusScope.




4.7.2. FocusScope

A focus scope declares that the last child element with focus:true receives the focus if the focus scope receives the focus. So it’s forward the focus to the last focus requesting child element. We will create a 2nd version of our TLineEdit component called TLineEditV2 using the focus scope as root element.

// TLineEditV2.qml

import QtQuick 2.5

FocusScope {
    width: 96; height: input.height + 8
    Rectangle {
        anchors.fill: parent
        color: "lightsteelblue"
        border.color: "gray"

    }

    property alias text: input.text
    property alias input: input

    TextInput {
        id: input
        anchors.fill: parent
        anchors.margins: 4
        focus: true
    }
}





Our example will now look like this:

Rectangle {
    ...
    TLineEditV2 {
        id: input1
        ...
    }
    TLineEditV2 {
        id: input2
        ...
    }
}





Pressing the tab key now successfully switches the focus between the 2 components and the correct child element inside the component is focused.




4.7.3. TextEdit

The TextEdit is very similar to TextInput and support a multi-line text edit field. It doesn’t have the text constraint properties as this depends on querying the painted size of the text (paintedHeight, paintedWidth). We also create our own component called TTextEdit to provide a edit background and use the focus scope for better focus forwarding.

// TTextEdit.qml

import QtQuick 2.5

FocusScope {
    width: 96; height: 96
    Rectangle {
        anchors.fill: parent
        color: "lightsteelblue"
        border.color: "gray"

    }

    property alias text: input.text
    property alias input: input

    TextEdit {
        id: input
        anchors.fill: parent
        anchors.margins: 4
        focus: true
    }
}





You can use it like the TLineEdit component

// textedit.qml

import QtQuick 2.5

Rectangle {
    width: 136
    height: 120
    color: "linen"

    TTextEdit {
        id: input
        x: 8; y: 8
        width: 120; height: 104
        focus: true
        text: "Text Edit"
    }
}
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4.7.4. Keys Element

The attached property Keys allows executing code based on certain key presses. For example to move a square around and scale we can hook into the up, down, left and right keys to translate the element and the plus, minus key to scale the element.

// keys.qml

import QtQuick 2.5

DarkSquare {
    width: 400; height: 200

    GreenSquare {
        id: square
        x: 8; y: 8
    }
    focus: true
    Keys.onLeftPressed: square.x -= 8
    Keys.onRightPressed: square.x += 8
    Keys.onUpPressed: square.y -= 8
    Keys.onDownPressed: square.y += 8
    Keys.onPressed: {
        switch(event.key) {
            case Qt.Key_Plus:
                square.scale += 0.2
                break;
            case Qt.Key_Minus:
                square.scale -= 0.2
                break;
        }

    }
}
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4.8. Advanced Techniques


Por fazer

To be written
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1. Introduzione a Qt 5

Autor da secção: jryannel [https://github.com/jryannel], marco-piccolino [https://github.com/marco-piccolino]


Nota

Il codice sorgente associato a questo capitolo è disponibile nella cartella assets.



Questo libro vuole offrire una panoramica sui diversi aspetti legati allo sviluppo di applicazioni con Qt, versione 5.x. Il libro è incentrato sulla nuova tecnologia di Qt Quick, ma allo stesso tempo fornisce le informazioni necessarie per scrivere back-end in C++, come anche estensioni per Qt Quick.

Questo capitolo fornisce una visione d’insieme di Qt 5. Il capitolo mostra sia le varie tipologie di applicazione a disposizione degli sviluppatori che un’applicazione dimostrativa, in modo da fornire un’anteprima degli argomenti che verranno affrontati. Inoltre, il capitolo vuole offrire una panoramica sul contenuto di Qt 5 e mostrare come entrare in contatto con i suoi creatori.


1.1. Prefazione

Storia

Qt 4 ha visto un progresso costante dal 2005, ed ha rappresentato una base solida per migliaia di applicazioni, e persino sistemi desktop e mobile completi.- Negli ultimi anni, gli utenti dei personal computer hanno modificato considerevolmente le proprie abitudini di utilizzo. Dai PC da tavolo si è passati ai notebook portatili e, infine, ai computer tascabili. Il desktop classico viene via via rimpiazzato da schermi portatili, basati sul touch e costantemente connessi. Questi cambiamenti vanno di passo con cambiamenti nella User Experience anche su desktop. Mentre nel passato le interfacce utente di Windows dominavano il mondo, oggigiorno spendiamo più tempo su schermi di altro tipo e interfacce che utilizzano un linguaggio differente.

Qt 4 è stato disegnato per soddisfare il mondo desktop e per fornire un set di widget per interfacce utente su tutte le maggiori piattaforme. La sfida per gli utenti di Qt oggi è cambiata, e la sfida principale è quella di fornire interfacce utente basate sul touch, i cui requisiti vengono definiti dai clienti, e che devono essere in grado di fornire un’esperienza d’uso moderna su tutti i maggiori sistemi desktop e mobile. Qt 4.7 ha introdotto la tecnologia QtQuick, che permette agli utenti di creare una serie di componenti UI partendo da elementi semplici, per poter così ottenere interfacce utente completamente nuove, definite dalle richieste dei clienti.


1.1.1. Il focus di Qt5

Qt 5 è una versione completamente rinnovata rispetto alla release di grande successo di Qt 4. Con la versione 4.8, Qt 4 ha ormai 7 anni. Era quindi il momento di rendere un toolkit eccezionale ancora migliore. Qt 5 è incentrato sui seguenti aspetti:


	Grafica eccellente: Qt Quick 2 si appoggia su OpenGL (ES) e utilizza un’implementazione basata su scene graph. Questa nuova composizione dello stack grafico consente di raggiungere nuovi livelli in termini di effetti grafici, combinati ad una semplicità di utilizzo mai vista prima in questo campo.

	Produttività degli sviluppatori: QML e JavaScript sono gli strumenti principali per la creazione delle UI. Il back-end sarà gestito dal codice in C++. La divisione netta tra JavaScript e C++  consente iterazioni rapide sia per gli sviluppatori front-end, che possono così concentrarsi sulla creazione di interfacce utente eleganti, sia per gli sviluppatori back-end in C++, che si possono concentrare su stabilità, performance ed estensioni del runtime.

	Portabilità cross-platform: Con la tecnologia consolidata della Qt Platform Abstraction, è ora possibile portare Qt su una gamma più ampia di piattaforme in maniera più semplice e rapida. Qt 5 si fonda sul concetto di Qt Essentials e di Add-ons, che consente agli sviluppatori OS di concentrarsi sui moduli essenziali e permette inoltre di ottenere dei runtime di dimensioni inferiori.

	Sviluppo Open: Qt è ora veramente un progetto di tipo open-governance, ospitato su Qt-Project [http://qt-project.org]. Lo sviluppo è open e guidato dalla community.








1.2. Introduzione a Qt5


1.2.1. Qt Quick

Qt Quick è il termine onnicomprensivo per la tecnologia dell’interfaccia utente utilizzata in Qt5. Qt Quick di per sé è una collezione di diverse tecnologie:


	QML - Linguaggio markup per interfacce utente

	JavaScript - Il linguaggio di scripting dinamico

	Qt C++ - La libreria c++ avanzata altamente portabile



[image: ../../_images/qt5_overview1.png]
Similmente ad HTML, QML è un linguaggio di markup. E’ costituito da tags che in QtQuick vengono chiamati elementi, i quali vengono racchiusi in parentesi graffe Item {}. E’ stato progettato fin dall’origine per la creazione di interfacce utente, per la velocità e per essere di facile lettura per gli sviluppatori. L’interfaccia utente può essere potenziata tramite l’utilizzo di codice JavaScript. Qt Quick è facilmente estendibile con funzionalità native custom tramite Qt C++. Sinteticamente, la UI dichiarativa viene chiamata front-end e le parti native vengono chiamate back-end. La distinzione permette di separare le operazioni native e computazionalmente onerose di un’applicazione dalla parte dell’interfaccia grafica.

In un progetto tipico, il front-end viene sviluppato in QML/JavaScript, mentre il codice back-end, che si interfaccia col sistema e si occupa del lavoro pesante, viene sviluppato usando Qt C++. Ciò permette una divisione naturale tra gli sviluppatori più orientati al design e gli sviluppatori funzionali. Tipicamente, il back-end viene testato utilizzando il testing framework proprio di Qt, e viene quindi esportato per l’utilizzo da parte degli sviluppatori front-end.




1.2.2. Assimilare un’Interfaccia Utente

Usando QtQuick, creeremo ora una semplice interfaccia utente che dimostra alcuni aspetti del linguaggio QML. Il risultato finale sarà una girandola con le pale che ruotano.

[image: ../../_images/scene4.png]
Cominciamo da un documento vuoto che chiamiamo main.qml. Tutti i file QML conterranno l’estensione .qml. Essendo un linguaggio di markup (come l’HTML) un documento QML deve avere uno e uno solo elemento radice che, nel nostro caso, è l’elemento Image, che ha larghezza e altezza basate sulla geometria dell’immagine di sfondo:

import QtQuick 2.3

Image {
    id: root
    source: "images/background.png"
}





Poiché il QML non pone alcun tipo di restrizione sul tipo di elemento che può essere l’elemento radice, utilizziamo un elemento Image con la proprietà source (sorgente) settata all’immagine di background.

[image: ../../_images/background1.png]

Nota

Ogni elemento ha diverse proprietà, per esempio un’immagine ha le proprietà width, height come anche altre proprietà, quali source.  Le dimensioni dell’elemento Image vengono desunte automaticamente dalle dimensioni dell’immagine sorgente. In alternativa, dovremmo settare le proprietà width e height a valori in pixel che siano ragionevoli.

Gli elementi più comuni sono localizzati nel modulo QtQuick che abbiamo incluso nella prima riga con la dichiarazione di import.

La proprietà speciale id è opzionale e contiene un identificativo per fare riferimento all’elemento in altre sezioni del documento. Importante: Una proprietà id non può venire modificata dopo che è stata creata, e non può venire settata al runtime. L’utilizzo di root come id per l’elemento radice è solo un’abitudine dell’autore che permette di fare riferimento all’elemento più in alto nella gerarchia in documenti QML di una certa lunghezza.



Gli elementi in primo piano dell’interfaccia utente (l’asta e la girandola) sono localizzati in immagini separate.

[image: ../../_images/pole1.png]
[image: ../../_images/pinwheel1.png]
L’asta (pole) va posizionata al centro orizontale dello sfondo, verso il basso. E la girandola (pinwheel) va posizionata al centro dello sfondo.

Di regola l’interfaccia utente sarà composta da molti elementi di tipo differente, e non solo immagini come in questo esempio.

Image {
    id: root
    ...
    Image {
        id: pole
        anchors.horizontalCenter: parent.horizontalCenter
        anchors.bottom: parent.bottom
        source: "images/pole.png"
    }

    Image {
        id: wheel
        anchors.centerIn: parent
        source: "images/pinwheel.png"
    }
    ...
}





Per posizionare la girandola al centro utilizziamo una proprietà complessa chiamata anchor. L’ancoraggio permette di specificare relazioni geometriche tra oggetti che hanno relazione padre-figlio e fratelli. Es.: Posizionami al centro di un altro elemento (anchors.centerIn:parent). Da entrambe le parti, sono disponibili le seguenti relazioni: left, right, top, bottom, centerIn, fill, verticalCenter e horizontalCenter. E’ necessario che le relazioni siano concordanti: per esempio, non ha senso ancorare il lato sinistro (left) di un elemento al lato superiore (top) di un altro elemento.

Quindi, andiamo a settare la girandola come centrata rispetto al genitore (parent), l’immagine di sfondo.


Nota

A volte sarà necessario effettuare piccoli aggiustamenti rispetto alla centratura esatta. Questa operazione è resa possibile dalle proprietà anchors.horizontalCenterOffset e anchors.verticalCenterOffset. Proprietà di aggiustamento simili sono disponibili anche per tutti gli altri punti di ancoraggio. Per una lista completa delle proprietà di ancoraggio, consultare la documentazione.




Nota

Posizionare un’immagine come elemento figlio del rettangolo radice mostra un aspetto importante dei linguaggi dichiarativi. L’interfaccia utente viene descritta seguendo l’ordine di livelli e gruppi, dove il livello più alto (il nostro rettangolo) è il primo ad essere disegnato, mentre i livelli figli vengono disegnati davanti ad esso, secondo il sistema di coordinate locale dell’elemento contenitore.



Per rendere questa dimostrazione più interessante, potremmo ora rendere la scena interattiva. L’idea è quella di rotare la girandola quando l’utente preme il tasto del mouse da qualche parte nella scena.

Per fare questo, utilizziamo l’elemento MouseArea e gli attribuiamo le stesse dimensioni dell’elemento radice.

Image {
    id: root
    ...
    MouseArea {
        anchors.fill: parent
        onClicked: wheel.rotation += 90
    }
    ...
}





L’area del mouse emette dei segnali (signals) quando l’utente clicca al suo interno. E’ possibile intercettare questo segnale sovrascrivendo la funzione onClicked. Nel caso specifico, facciamo riferimento alla girandola e ne modifichiamo la rotazione di +90 gradi.


Nota

Questo meccanismo funziona per ogni segnale, la convenzione per il nome della funzione è on + NomeDelSegnale. Inoltre, tutte le proprietà emettono un segnale una volta che il loro valore è cambiato. La convenzione per il nome è:


on + NomeProprietà + Changed


Per esempio, se una proprietà width cambia, è possibile osservarla con onWidthChanged: print(width).



Ora la girandola ruota, ma non in modo fluido. La proprietà rotation cambia immediatamente. Invece, vorremmo che la proprietà cambiasse di 90 gradi in un arco di tempo. A questo punto entrano in gioco le animazioni. Un’animazione definisce come il cambio di una proprietà debba essere distribuito lungo un periodo di tempo. Per abilitare questo comportamento, utilizziamo un tipo di animazione chiamato property behavior. Il Behaviour (comportamento) specifica un’animazione per una certa proprietà che si applica ad ogni cambiamento di quella proprietà. In breve, ogni volta che la proprietà cambia, l’animazione viene lanciata. Questo è solo uno dei tanti modi che esistono per dichiarare un’animazione in QML.

Image {
    id: root
    Image {
        id: wheel
        Behavior on rotation {
            NumberAnimation {
                duration: 250
            }
        }
    }
}





Ora, ogniqualvolta la proprietà rotation della girandola cambia, essa verrà animata utilizzando una NumberAnimation della durata di 250 ms. Ovvero, ogni rotazione di 90 gradi impiegherà 250 ms.

[image: ../../_images/scene21.png]

Nota

In realtà, la girandola non apparirà sfocata. Lo sfocamento serve solo ad indicare la rotazione. Tuttavia, nella cartella degli assets è presente una girandola sfocata. Forse vuoi provare ad utilizzarla.



Ora la girandola ha già un aspetto molto migliore. Spero che questo esempio ti abbia dato una prima impressione di come funzioni la programmazione in Qt Quick.






1.3. Gli ingredienti di Qt

Qt 5 consiste di una grande quantità di moduli. Generalmente, un modulo è una libreria che può essere utilizzata dallo sviluppatore. Alcuni moduli sono obbligatori per ogni piattaforma che supporta Qt. Tali moduli formano un insieme chiamato Qt Essentials Modules. Molti moduli sono opzionali e formano i Qt Add-On Modules. E’ probabile che la maggior parte degli sviluppatori non abbia bisogno di tali moduli, ma conoscerli è buona cosa in quanto essi forniscono soluzioni egregie a problemi ricorrenti.


1.3.1. I moduli Qt

I Qt Essentials modules sono obbligatori per ogni piattaforma che supporta Qt. Essi forniscono le basi per sviluppare un’applicazione Qt 5 moderna utilizzando Qt Quick 2.

Core-Essential Modules

Il set minimo di moduli Qt 5 per iniziare la programmazione in QML.







	Modulo
	Descrizione




	Qt Core
	Le classi fondamentali non grafiche utilizzate dagli altri moduli


	Qt GUI
	Classi base per componenti di interfaccia grafica utente (GUI). Include OpenGL.


	Qt Multimedia
	Classi per funzionalità audio, video, radio e camera.


	Qt Network
	Classi che rendono la programmazione di rete più semplice e portabile.


	Qt QML
	Classi per i linguaggi QML e JavaScript.


	Qt Quick
	Framework dichiarativo per la costruzione di applicazioni altamente dinamiche con interfacce utente personalizzate.


	Qt SQL
	Classi per l’integrazione di database utilizzando SQL.


	Qt Test
	Classi per lo unit testing di applicazioni e librerie Qt.


	Qt WebKit
	Classi per un’implementazione basata su WebKit2 ed una nuova API in QML. Vedi anche Qt WebKit Widgets nei moduli add-on.


	Qt WebKit Widgets
	Classi di Qt 4 basate su WebKit1 e QWidget.


	Qt Widgets
	Classi per estendere Qt GUI con widget C++.
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Moduli Addon Qt

Oltre ai moduli essenziali, Qt offre agli sviluppatori software moduli addizionali che non fanno parte della distribuzione. Ecco un breve elenco di moduli addizionali disponibili.


	Qt 3D - Una serie di API che rendono la programmazione grafica 3D semplice e dichiarativa.

	Qt Bluetooth - API in C++ e QML per piattaforme che utilizzano la tecnologia wireless Bluetooth.

	Qt Contacts - API in C++ e QML per accedere alle rubriche e ai database dei contatti.

	Qt Location - Mette a disposizione posizionamento, mappe, navigazione e ricerca dei luoghi tramite interfacce QML e C++. back-end NMEA per il posizionamento

	Qt Organizer - API in C++ e QML per accedere agli eventi dell’agenda (memo, eventi, etc.).

	Qt Publish and Subscribe.

	Qt Sensors - Accesso ai sensori tramite interfacce QML e C++.

	Qt Service Framework -  Permette alle applicazioni di leggere, sfogliare e sottoscrivere notifiche di cambiamento.

	Qt System Info - Per accedere alle informazioni e capacità del sistema.

	Qt Versit - Supporto per i formati vCard e iCalendar.

	Qt Wayland - Solo per Linux. Include l’API Qt Compositor (server), e il plugin per piattaforme Wayland (clients).

	Qt Feedback - Riscontro tattile e audio alle azioni degli utenti.

	Qt JSON DB - Un sistema di immagazzinamento dati non basato su SQL.




Nota

Poiché questi moduli non fanno parte della distribuzione, il loro stato varia, a seconda di quanti contributori siano attivi e di quanto vengano testati.






1.3.2. Piattaforme Supportate

Qt supporta numerose piattaforme. Tutte le maggiori piattaforme sia desktop che embedded sono supportate. Tramite la Qt Application Abstraction, oggi risulta più semplice portare Qt sulla tua piattaforma, se necessario.

Testare Qt 5 su una piattaforma è dispendioso in termini di tempo. Un sottoinsieme delle piattaforme è stato selezionato dal qt-project per costituire il gruppo delle piattaforme di riferimento. Queste piattaforme vengono testate approfonditamente per assicurarne la qualità. Ma attenzione: non esiste codice completamente privo di errori.






1.4. Il Qt Project

Dalla wiki del qt-project [http://wiki.qt-project.org]:

“Il Qt Project è una community meritocratica e basata sul consenso interessata a Qt. Chiunque sia interessato può unirsi alla community, partecipare ai processi decisionali, e contribuire allo sviluppo di Qt.”

Il Qt-Project è un’organizzazione che porta avanti lo sviluppo della parte open-source di Qt. Costituisce la base a cui altri utenti possono contribuire. Il contributore maggiore è DIGIA, che detiene anche i diritti commerciali di Qt.

Qt ha un lato open-source e un lato commerciale. Il lato commerciale è riservato a quelle aziende che non soddisfano le licenze di tipo open-source. Senza l’aspetto commerciale, queste aziende non sarebbero in grado di usare Qt, e DIGIA non sarebbe in grado di contribuire con così tanto codice al Qt-Project.

Ci sono molte aziende in tutto il modo che sussistono grazie alle consulenze e allo sviluppo di prodotti con Qt sule varie piattaforme. Ci sono molti progetti e sviluppatori open-source che si affidano a Qt come libreria principale per lo sviluppo. E’ bello far parte di questa comunità molto attiva e lavorare con tool e librerie eccezionali. Questo ti rende una persona migliore? Forse :-)

Contribuisci qui: http://wiki.qt-project.org
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1. Conheça o framework Qt 5

Autor da secção: jryannel [https://github.com/jryannel], micdoug [https://github.com/micdoug]


Nota

O código fonte referente a este capítulo pode ser encontrado na pasta assets.



Este livro traz uma visão geral sobre os diferentes aspectos envolvidos no desenvolvimento de aplicações utilizando o framework Qt versão 5.x. O livro é focado na utilização da nova tecnologia de desenvolvimento de interfaces Qt Quick, porém também traz informações necessárias para codificar em C++ o backend e extensões para suas aplicações Qt Quick.

Neste capítulo temos uma visão geral do Qt 5. São mostrados diferentes modelos de aplicações disponíveis para os desenvolvedores e um aplicativo de exemplo para se ter uma ideia do que está por vir nos próximos capítulos. Além disso, este capítulo tem como objetivo dar uma visão geral sobre os conteúdos disponibilizados pelo framework e como entrar em contato com os desenvolvedores do Qt 5.


1.1. Prefácio

História

O Qt 4 evoluiu bastante desde 2005, e, apresenta uma base sólida para milhares de aplicativos e até mesmo sistemas móveis e ambientes gráficos desktop completos. O padrão dos usuários de software mudou bastante nos últimos anos. Dos computadores de mesa para notebooks portáteis e nos dias atuais dispositivos móveis. O clássico desktop está sendo cada vez mais substituído por dispositivos móveis sensíveis ao toque conectados a Internet. Devido a isso, o paradigma de construção de interfaces também muda. Antes o padrão de interface do Windows dominava o mundo, hoje gastamos mais tempo desenvolvendo para outros tipos de dispositivos e telas utilizando geralmente linguagens de construção de interfaces diferentes.

O Qt 4 foi desenvolvido com foco no mundo dos desktops, contendo um conjunto de widgets que podem ser utilizados nas principais plataformas. O desafio para os usuários do Qt tem mudado ultimamente. O foco tem se direcionado para o desenvolvimento de interfaces sensíveis ao toque orientadas ao usuário e para o suporte de interfaces modernas compatíveis com as principais plataformas desktop e de sistemas móveis. O Qt versão 4.7 começou a introduzir a tecnologia QtQuick que permite aos usuários criar um conjunto de componentes de interface gráfica a partir de elementos básicos para alcançar uma interface totalmente nova, de acordo com a necessidade do cliente.


1.1.1. Qt5 um novo foco

O Qt 5 é uma completa reformatação da versão Qt 4 que foi muito bem sucedida. Com a versão Qt 4.8, a distribuição Qt 4 completou 7 anos de idade. Já era hora de fazer um incrível framework como Qt ainda mais incrível. O Qt 5 se foca nos seguintes aspectos:


	Gráficos marcantes: A tecnologia Qt Quick 2 é baseada no OpenGL (ES) a partir do uso de uma implementação de um grafo de cena. A pilha gráfica refeita permite um novo nível de efeitos gráficos combinados com uma facilidade de uso jamais vista.

	Produtividade: QML e JavaScript são o foco para a criação de interfaces. A retaguarda ou back-end será escrita em C++. A divisão entre JavaScript e C++ permite uma interação mais fácil entre desenvolvedores front-end que se concentram em criar lindas interfaces de usuário e desenvolvedores back-end que utilizam C++ com foco em estabilidade, desempenho e extensão de funcionalidades.

	Portabilidade entre plataformas: Com a consolidada Plataforma de Abstração Qt ou Qt Platform Abstraction, agora é possível portar Qt para uma grande variedade de plataformas de maneira mais fácil e rápida. O Qt 5 tem uma estrutura baseada na separação da plataforma em Qt Essentials (módulos essenciais) e Add-ons (módulos extras), o que permite aos desenvolvedores de sistemas operacionais se focar nos módulos essenciais e leva a um menor tempo de execução como um todo.

	Desenvolvimento aberto: O Qt agora é realmente um projeto aberto hospedado em Qt-Project [http://qt-project.org]. O desenvolvimento é aberto e comandado pela comunidade.








1.2. Introdução ao Qt5


1.2.1. Qt Quick

Qt Quick é o principal componente utilizado para construção de interfaces gráficas com Qt5. O Qt Quick consiste em um conjunto de tecnologias reunidas:


	QML - Linguagem de marcação para criação de interfaces

	JavaScript - A linguagem de scripts dinâmica

	Qt C++ - O conjunto de bibliotecas multiplataforma melhorada



[image: ../../_images/qt5_overview2.png]
Assim como HTML, QML é uma linguagem de marcação. Ela é composta de tags, chamadas de elementos em QtQuick, que são definidas entre chaves Item {}. Ela foi desenvolvida do zero com foco na criação de interfaces de usuários de maneira rápida e fácil. As interfaces criadas podem ser melhoradas a partir do uso de código em JavaScript. O Qt Quick é facilmente extensível a partir do uso de código nativo em C++. Em resumo, a interface gráfica criada com código declarativo é chamada de front-end e a parte desenvolvida com código nativo de back-end. Estes conceitos permitem a separação dos mecanismos de computação intensiva e operações nativas das suas aplicações da parte de desenvolvimento de interfaces.

Em um projeto típico, o front-end é desenvolvido em QML/JavaScript e o back-end, que geralmente se comunica com o sistema operacional e realiza o trabalho pesado é desenvolvido em Qt C++. Isso permite uma separação natural entre desenvolvedores voltados para o projeto de interfaces gráficas dos desenvolvedores funcionais. Normalmente o código do back-end é testado utilizando o próprio módulo de testes unitários presente no framework Qt e disponibilizado para que os desenvolvedores front-end possam utilizá-lo.




1.2.2. Construindo uma Interface de Usuário

Vamos criar uma interface de usuário simples utilizando o QtQuick, demonstrando alguns aspectos da linguagem QML. Vamos construir uma paisagem com um cata-vento que se movimenta.

[image: ../../_images/scene5.png]
Vamos começar criando um documento vazio chamado main.qml. Todos os arquivos QML devem terminar com a extensão .qml. Como uma linguagem de marcação (assim como HTML), um documento QML deve conter um e somente um elemento raiz, que no nosso caso é o elemento Image que tem suas dimensões (largura e altura) definida pela imagem exibida por ele:

import QtQuick 2.3

Image {
    id: root
    source: "../../en/ch01/images/background.png"
}





Como QML não apresenta uma limitação quanto ao tipo de elemento que pode ser usado como raiz, nós usamos um elemento Image com a propriedade source configurada com o caminho para a imagem de fundo que iremos exibir.

[image: ../../_images/background2.png]

Nota

Todo elemento possui propriedades, por exemplo, uma imagem tem uma largura definida pela propriedade width, uma altura definida pela propriedade height e também outras propriedades como o source que define o caminho da imagem que será exibida pelo elemento. O tamanho do elemento Image é automaticamente deduzido a partir das dimensões da imagem exibida. Nós também podemos definir explicitamente os valores para as propriedades width e height utilizando medidas em pixels.

Os elementos padrões estão localizados no módulo QtQuick, o qual nós incluímos na primeira linha do código a partir da palavra chave import.

A propriedade especial id é opcional e contém um identificador utilizado para referenciar o elemento a partir de outros trechos de código dentro do documento. Importante: A propriedade id não pode ser modificada após ser definida e ela não pode ser definida em tempo de execução. Usar root como o identificador dos elementos raízes é somente uma convenção utilizada pelo autor, que facilita a referência a elementos raízes em arquivos QML maiores.



Os outros elementos da nossa interface, a haste e o cata-vento estão armazenados em imagens separadas.
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A haste deve ser posicionada centralizada horizontalmente em relação a imagem de fundo, partindo da parte inferior da tela. E o cata-vento pode ser posicionado no centro da tela.

Normalmente as interfaces de usuários serão compostas de vários tipos diferentes de elementos e não somente de imagens como neste exemplo.

Image {
    id: root
    ...
    Image {
        id: pole
        anchors.horizontalCenter: parent.horizontalCenter
        anchors.bottom: parent.bottom
        source: "images/pole.png"
    }

    Image {
        id: wheel
        anchors.centerIn: parent
        source: "images/pinwheel.png"
    }
    ...
}





Para posicionar o cata-vento centralizado em relação a imagem de fundo, utilizamos uma propriedade composta chamada anchor (âncora). Utilizando âncoras nos permite especificar a localização de elementos utilizando relações entre eles. Por exemplo, para posicionar um elemento de forma centralizada em relação a posição de outro elemento utilizamos ( anchors.centerIn: parent ). Também podemos usar as propriedades left (esquerda), right (direita), top (cima), bottom (em baixo), centerIn (centralizar), fill (preencher), verticalCenter (centro vertical) e horizontalCenter (centro horizontal). Temos que tomar cuidado para utilizar relações que fazem sentido, por exemplo, não podemos ancorar a lateral esquerda de um elemento (left) com a posição superior (top) de outro.

Assim, nós posicionamos o cata-vento no centro da imagem de fundo.


Nota

Algumas vezes você pode precisar fazer pequenos ajustes ou desvios em relação a posição centralizada original. Isso pode ser feito a partir do uso das propriedades anchors.horizontalCenterOffset ou anchors.verticalCenterOffset. Ajustes similares podem ser feitos em relação aos outros tipos de âncoras. Consulte a documentação para ver a lista completa de propriedades que podem ser ajustadas a partir do uso da propriedade anchors.




Nota

Utilizar uma imagem como um elemento filho do nosso elemento raiz demonstra um conceito importante presente em linguagens declarativas. Você descreve a interface de usuário baseado em camadas e agrupamento, onde a camada superior (nossa imagem de fundo) é desenhada antes e as camadas filhas são desenhadas por cima dela, utilizando o sistema de coordenadas definido pelo elemento que as contém.



Para tornar o nosso exemplo um pouco mais interessante, vamos adicionar um pouco de interatividade ao nosso aplicativo. A ideia é de rotacionar o cata-vento quando o usuário clicar no cenário.

Nós utilizamos o elemento MouseArea e fazemos com que ele cubra toda a imagem de fundo.

Image {
    id: root
    ...
    MouseArea {
        anchors.fill: parent
        onClicked: wheel.rotation += 90
    }
    ...
}





O elemento MouseArea emite sinais quando um usuário clica sobre a área que ele está posicionado. Nós podemos então reagir a este evento atribuindo uma função para a propriedade onClicked. Neste caso, nós referenciamos a imagem do cata-vento e modificamos sua rotação em 90 graus no sentido horário (+90).


Nota

A nomenclatura on + NomeDoSinal é utilizada para todos os sinais. Outro aspecto é que todas as propriedades emitem sinais quando tem seu valor alterado. A nomenclatura neste caso é:


on + NomeDaPropriedade + Changed


Por exemplo, você pode monitorar mudanças na propriedade width utilizando onWidthChanged: print(width).



Agora o cata-vento irá se mexer, mas de forma brusca. A propriedade de rotação é modificada imediatamente após o clique. O que nós queremos é que o catavento rotacione 90 graus de forma suavizada durante um período de tempo. É aí que o uso de animações se torna útil. Uma animação define de que forma mudanças em uma propriedade são distribuídas durante um intervalo de tempo. Para habilitar este comportamento nós utilizamos um tipo de animação chamado property behavior. A palavra chave Behaviour especifica uma animação para uma propriedade que será aplicada toda vez que esta sofrer uma alteração de valor. Em resumo, toda vez que uma propriedade é alterada, a animação é executada. Esta é uma das diversas maneiras que podemos declarar uma animação em QML.

Image {
    id: root
    Image {
        id: wheel
        Behavior on rotation {
            NumberAnimation {
                duration: 250
            }
        }
    }
}





Agora quando a propriedade rotation do cata-vento for alterada ela será animada utilizando um NumberAnimation com uma duração de 250 ms. Então cada rotação de 90 graus levará 250 ms.
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Nota

Você não verá o cata-vento distorcido como mostrado na imagem. A imagem está desta maneira somente para indicar o movimento de rotação. Porém existe uma imagem com este efeito no diretório assets. Talvez você queira utilizá-la.



Agora o cata-vento está muito melhor. Espero que este exemplo tenha proporcionado uma pequena noção sobre como a programação com Qt Quick funciona.






1.3. A Estrutura do Qt

O Qt 5 é estruturado em um grande conjunto de módulos. Um módulo consiste de uma biblioteca que pode ser utilizada pelos desenvolvedores. Alguns módulos são essenciais para o funcionamento do framework em uma plataforma. Eles formam um conjunto que chamamos de Módulos Qt Essentials. Já, outros módulos são opcionais e formam o que chamamos de Módulos Qt Addon. Normalmente a maioria dos desenvolvedores não precisam usar estes módulos, porém é bom saber que eles apresentam recursos adicionais que podem ser de grande ajuda em alguns casos.


1.3.1. Módulos Qt

Os módulos presentes na categoria Qt Essentials são essenciais para que o framework funcione em uma plataforma. Eles fornecem a base para desenvolver aplicações modernas utilizando o Qt 5 e a tecnologia Qt Quick 2.

Módulos Essenciais - Qt Essentials

O conjunto mínimo de módulos do framework Qt 5 necessários para programar utilizando QML.







	Módulo
	Descrição




	Qt Core
	Classes do núcleo não relacionadas com tarefas gráficas que são utilizadas pelos outros módulos.


	Qt GUI
	Classes base para construção de componentes de interfaces gráficas. Inclui OpenGL.


	Qt Multimedia
	Classes para manipulação de áudio, vídeo, rádio e câmera.


	Qt Network
	Classes que tornam a utilização de comunicação em rede mais fácil e portável.


	Qt QML
	Classes base para as linguagens QML e JavaScript.


	Qt Quick
	Framework declarativo que permite a construção de aplicações altamente dinâmicas com interfaces de usuário personalizadas.


	Qt SQL
	Classes utilizadas para integração de banco de dados utilizando SQL.


	Qt Test
	Classes para construção de testes unitários para aplicações e bibliotecas que utilizam o framework Qt.


	Qt WebKit
	Classes para implementação do WebKit2 e sua API QML. Veja também o módulo Qt WebKit Widgets.


	Qt WebKit Widgets
	Classes para implementação do WebKit1 e suas classes baseadas no QWidget para o Qt 4.


	Qt Widgets
	Classes que extendem o módulo Qt GUI com widgets C++.
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Módulos Qt Addon

Além dos módulos essenciais, o Qt oferece módulos adicionais para os desenvolvedores, que não fazem parte da distribuição básica. Segue uma breve lista de módulos adicionais disponíveis.


	Qt 3D - Um conjunto de APIs que permitem programar gráficos 3D de forma fácil e declarativa.

	Qt Bluetooth - APIs C++ e QML para utilizar a tecnologia Bluetooth.

	Qt Contacts - APIs C++ e QML para acessar lista de endereços e contatos.

	Qt Location - Permite a utilização de funcionalidades de localização, posicionamento, mapas, navegação através de interfaces QML e C++. Backend NMEA para posicionamento

	Qt Organizer - APIs C++ e QML para acessar organizadores de eventos (todos, events, etc.)

	Qt Publish and Subscribe

	Qt Sensors - Acesso a sensores através de interfaces QML e C++.

	Qt Service Framework - Permite as aplicações ler, navegar e escutar notificações de mundança entre processos.

	Qt System Info - Permite acessar informações relacionadas com o sistema e seus recursos.

	Qt Versit - Suporte para os formatos vCard e iCalendar.

	Qt Wayland - Somente para Linux. Inclui a API Qt Compositor (servidor), e plugin para a plataforma Wayland (clientes).

	Qt Feedback - Respostas táteis e sonoras para ações de usuarios.

	Qt JSON DB - Armazenamento no-SQL para objetos.




Nota

Como estes módulos não fazem parte da distribuição principal, seus status de desenvolvimento são diferentes, variando de acordo com a quantidade de desenvolvedores que contribuem para sua manutenção e teste.






1.3.2. Plataformas suportadas

O Qt suporta uma grande variedade de plataformas. As principais plataformas desktop e embarcadas são suportadas. Através do Qt Application Abstraction, atualmente portar Qt para outras plataformas é uma tarefa mais fácil.

Testar o Qt 5 em uma plataforma é uma tarefa que leva bastante tempo. Um subconjunto de plataformas foi selecionado pelo projeto Qt para compor o conjunto de plataformas referência. Estas plataformas são altamente testadas, o que garante um bom nível de qualidade. Mas ponha na sua mente: nenhum código é livre de erros.






1.4. O Qt Project

Extraído de qt-project wiki [http://wiki.qt-project.org]:

“O Qt Project é uma comunidade meritocrática baseada no consenso composta por pessoas interessadas no framework Qt. Qualquer um que compartilha deste interesse pode se juntar a comunidade, participar nos seus processos de decisões, e contribuir para o desenvolvimento do Qt.”

O Qt-Project é a organização que mais contribui para o desenvolvimento da parte de código livre do framework Qt. Ela forma a base para outros usuários contribuírem. O maior contribuidor é a DIGIA, que detém os direitos comerciais sobre o Qt.

O Qt pode ser utilizado sob a licença de código livre ou comercial. A licença comercial é utilizada por empresas que não podem ou não vão cumprir com os deveres da licença de código livre. Sem a licença comercial estas empresas não poderão utilizar o Qt devidamente, o que não permitiria a DIGIA contribuir tanto para o código do Qt-Project.

Existem muitas empresas ao redor do mundo que mantém suas atividades baseadas em consultorias e desenvolvimento de produtos utilizando o Qt e suas plataformas. Existem vários projetos de código livre e desenvolvedores que utilizam Qt como sua principal plataforma de desenvolvimento. É muito bom fazer parte desta comunidade vibrante e trabalhar com estas ferramentas e bibliotecas incríveis. Isso pode fazer de você uma pessoa melhor? Talvez:-)

Contribua aqui: http://wiki.qt-project.org
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